ANEXO B

MAPA TECTÔNICO DO EMBASAMENTO ADJACENTE À BACIA DE SANTOS

PROJETO: TECTÔNICA RÚPTIL MESO-CENOZÓICA E MAGMATISMO ASSOCIADO: ESTUDO INTEGRADO DO EMBASAMENTO ADJACENTE À BACIA DE SANTOS, S-SE DO BRASIL Coordenação da Rede de Casta d Edison José Milani (PETBOBRASTADO DO RIO DE JANEIRO - UERJ - Nº 0050.0022710.06.4

Coordenação do Projeto: Monica Heilbron (UERJ) Julio Cesar Horta de Almeida (UERJ)

Julio Cesar Horta de Almeida Claudio de Morisson Valeriano

Luiz Guilherme do Eirado Miguel Tupinambá

Beatriz Paschoal Duarte

Sergio Valente Janaína Lobo Eliane Guedes Arthur Corval

Edição digital:

Monica Heilbron

Autoria das integração geológicas:

Integração do Magmatismo Mesozóico

Fontes utilizadas para a integração geológica:

TEKTOS/UERJ - Mapa Tectônico da Faixa Ribeira Central - 1:250.000 (Inédito). (Setor Norte).

CPRM - Serviço Geológico Nacional - Carta Geológica do Brasil ao Milionésimo: Folhas Rio de Janeiro, Curitiba, Iguape ,Paranapanema e Vitória, 2004. (Setor Centro-Sul)

Heilbron, M., Valeriano, C.M., Tassinari, C.C.G., Almeida J., Tupinambá, M., Siga Jr, O. & Trouw R. 2008. Correlation of Neoproterozic Terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions, In: Pankhurst R.J., Trouw R.A.J., Brito Neves, B.B. & De Wit, M.J.(eds) West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, London, Special Publications, 294, 211-237.

Heilbron, M., Pedrosa-Soares, A.C., Campos Neto, M., Silva, L.C., Trouw, R.A.J. & Janasi, V.C. 2004a. A Provincia Mantiqueira: In: Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R. & Brito Neves, B.B. (eds) O Desvendar de um Continente: A Moderna Geologia da América do Sul e o Legado da Obra de Fernando Flávio Marques de Almeida, XIII, 203-234. Beca, São Paulo.

Basei, M.A.S, Frimmel, H.E., Nutman, A.P. & Preciozzi, F. 2008. West Gondwana Basel, M.A.S, Frimmel, H.E., Nutman, A.P. & Preciozzi, F. 2008. West Gondwana amalgamation based on derital zircon ages from Neoproterozoic Ribiera and Dom Feliciano belts of South America and comparison with coeval sequences from SW Africa. *In:* Pankhurst, R.J, Trouw, R.A.J, Brito Neves, B.B. & De Wit, M.J. (eds) West Gondwana Pre-Cenozoic Correlations Across the South America Region. Geological Society, London, Special Publications, **294**, 239-256.

45°15'0"W

65.5 Ma

ANEXO C

	MATRIZ		Granulação: Fina ≥ 1 mm Méo	dia 1-5 mm Grossa > 5 mm	
Amostra	Cistalinidade	Granulação	Textura	Minerais (em ordem decrescente)	Fenocristais
CAR-III-8	Hipocristalina	Fina	Glomeroporfirítica	cb, cl, cpx, plg	cpx (esqueletal), plg
CAR-III-13A	Criptocristalina	Fina	Microporfirítica	plg, op	tem vesículas de min. Incolor, op
CAR-III-13B	Hipocristalina	Fina	Glomeroporfirítica	plg, cpx, op, cb	plg, cpx alterando p/ CB
CAR-RS-27A	Holocristalina	Fina	Porfirítica, esqueletal	cpx, plg, cb, op, ap	ol, cpx
CAR-RS-27B	Holocristalina	Fina	Porfirítica, seriada, esqueletal	plg, cpx, op, cb	ol, cpx
IAN-II-1B	Holocristalina	Fina a Média	Intergranular, seriada, inequigranular	plg, cpx, op, cb	plg
IAN-II-5B	Hipocristalina	Fina	Porfirítica, seriada, esqueletal	plg, cpx, op	cpx, plg
IAN-II-5C	Hipocristalina	Fina	Porfirítica	plg, cpx, op, cb	cpx, plg
IAN-II-8A	Hipocristalina	Fina	Intersticial	plg, cpx, op,(todos aneudrais)	_
IAN-II-8B	Hipocristalina	Fina	Porfirítica, em bainha	plg, cpx, op	plg
IAN-II-10B	Hipohyalina	Fina	Intersertal, micropofirítica	Só se visualiza minerais opacos	_
IAN-II-10C	Holocristalina	Fina a Média	Porfirítica	plg, cpx, op	plg > 5 mm, cpx
IAN-II-10D	Hipohyalina	Fina	Intersertal	l	_
IAN-II-19	Holocristalina	Fina	Seriada	plg, cpx, cl, op, cb	_
IAN-II-25A	Holocristalina	Fina <1 mm	Intergranular	plg, cpx, op	_
IAN-II-25B	Hipocristalina	Fina	Granular, seriada	plg, cpx, op, cb	plg
IAN-II-27	Hipocristalina	Fina	Intergranular	plg, cpx, op, cb	plg
IAN-III-7A	Holocristalina	Fina	Granular, seriada	plg, cpx, op, cb	_
IAN-III-7B	Holocristalina	Fina	Intergranular, seriada	plg, cpx, op, cb	_
IAN-III-10A	Holocristalina	Média	Em bainha	plg, cpx, op, cb	_
IAN-III-10B	Holocristalina	Fina a Média	Porfirítica, intergranular	plg, cpx, op	cpx, plg

Anexo C - Tabela com	petrografia dos	diques da região	de Ubatuba
----------------------	-----------------	------------------	------------

	MATRIZ		Granulação: Fina ≥ 1 mm Média 1-5 mm Grossa > 5 mm						
Amostra	Cistalinidade	Granulação	Textura	Minerais (em ordem decrescente)	Fenocristais				
MAR-JJ-1	Holocristalina	Fina	Glomeroporfirítica	plg, cpx, op					
PIC-I-20A	Hipohyalina	Fina	Intercristal, Micropofirítica	plg, op					
PIC-I-20B	Holocristalina	Fina	Intergranular, seriada, esqueletal	plg, cpx, op, cb					
PIC-B-31	Holocristalina	Média	Intergranular seriada	plg, cpx, op, cb	-				
RS-31A	Holocristalina	Média	Seriada	plg, cpx, op, cb	-				
RS-31B	Holocristalina	Fina	Intergranular, seriada	plg, cpx, op, cb					
SSE-JJ-6B	Hipocristalina	Fina	Seriada, porfirítica, em bainha	cpx, plg, op, ol (na matriz)	рх				
Amostra	Cistalinidade	Granulação	Textura	Minerais (em ordem decrescente)	Fenocristais				
SSE-RS-29	Hipocristalino	Fina	Glomeroporfirítica	plg, cpx, op	px e plg (raro)				
SSE-RS-29A	Hipocristalino	Fina	Glomeroporfirítica	cpx, cb, plg, op, cl, serp, bio	ol, px alterando para cb				
SSE-RS-29B	Holocristalina	Fina	Porfirítica	cpx, plg, cb, op, serp.	cpx > 5 mm, ol				
SSE-RS-29C	Hipocristalina	Fina	Seriada a porfirítica	cpx, plg, cb, op, bio	cpx esqueletal				
SSE-RS-29D	Hipocristalina	Fina	Seriada	cpx, plg, op, ol (na matriz)					
SSE-RS-29E	Hipocristalina	Fina	Seriada, porfirítica	cpx, plg, cb, op, cl	срх				
SSE-RS-29F	Hipocristalina	Fina	Serida	cb, plg, cpx, op					
SSE-RS-29G	Hipocristalina	Fina	Porferítica esqueletal	plg, cpx, cb, op	срх				
SSE-RS-29H	Hipocristalina	Fina	Seriada	cpx, plg, cb, op					
UBA-I-2B	Hipocristalina	Fina	Seriada	plg, cpx, op					
UBA-I-4C	Holocristalina	Média	Intergranular, seriada, porfirítica	cpx, plg, op	cpx, ol, plg				
UBA-I-4D	Holocristalina	Fina	Granular	plg, cpx, op					
UBA-I-5B	Holocristalina	Fina	Intergranular	cpx, plg, op					
UBA-I-5D	Holocristalina	Fina	Esqueletal seriada	cpx, op, cl, plg					
UBA-I-6A	Holocristalina	Fina	Intergranular	plg, cpx, op,					
UBA-I-6B	Holocristalina	Média	Intergranular, seriada	plg, cpx, op, cb					

	MATRIZ		Granulação: Fina ≥ 1 mm Méo	dia 1-5 mm Grossa > 5 mm	
Amostra	Cistalinidade	Granulação	Textura	Minerais (em ordem decrescente)	Fenocristais
UBA-I-12	Holocristalina	Média	Seriada Intergranular	plg, cpx, op, cb	cpx, plg
UBA-I-14A	Hipocristalina	Fina	Intergranular seriada	plg, cpx, op, cb, ol	
UBA-I-16A	Holocristalina	Fina	Seriada, glomeroporfirítica	cpx, plg, op	срх
UBA-I-31	Holocristalina	Fina	Radial, Intergranular	plg, cpx, cb, op	
UBA-I-32	Hipocristalina	Fina	Intergranular	plg, cpx, cb, op	
UBA-II-5C	Hipocristalina	Fina	Porfirítica	plg, cpx, op, cb, ol	cpx, plg
UBA-II-23A	Criptocristalino	Fina			
UBA-II-23B	Holocristalina	Fina	Intergranular seriada	plg,cpx,op,cb	cpx esqueletal e em bainha
UBA-II-24A	Holocristalina	Média	Em bainha	plg, cpx, op	
UBA-II-24B	Holocristalina	Média	Em bainha seriada	plg, cpx, op, cb	
UBA-II-24D	Hipocristalina	Fina	simplectítica, esqueletal, em bainha	plg, cpx, op, cb	plg
UBA-II-28C	Holocristalina	Fina		plg acircular subeudral, pouco cpx	
UBA-RS-30A	Hipocristalina	Fina	Intergranular	plg, cpx, op	
UBA-RS-30B	Holocristalina	Fina	Intergranular	plg, cpx, op, cb	
UBA-RS-30C	Hipocristalina	Fina	Seriada, granular	plg, cpx, op, cb	
UBA-RS-30D	Hipocristalina	Fina	Microcristalina		
UBA-RS-30E	Holocristalina	Fina	Seriada, porifirítica	cpx, plg, cb, op	
UBA-RS-32A	Holocristalina	Fina	Intergranular	plg, px, op	
UBA-RS-32B	Holocristalina	Média	Intergranular	plg, px, op,	plg
UBA-RS-32C	Criptocristalina	Fina	Radial esferulito	op. Material tardio	

ANEXO D

Amostra	SiO ₂	TiO ₂	AI_2O_3	$Fe_2O_3^{(T)}$	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	PF	Total
IAN-III-7A	52,35	3,56	12,50	15,01	0,20	3,26	6,84	2,96	2,19	0,66	0,48	100,00
CAR-III-13A	53,38	3,51	13,85	11,82	0,17	3,64	6,82	3,11	2,66	0,81	0,36	100,10
CAR-III-13B	52,72	3,52	13,75	11,84	0,16	3,75	6,69	3,06	2,65	0,80	0,95	99,89
CAR-RS-27A	46,56	2,07	12,04	14,09	0,12	8,05	8,77	2,19	0,55	0,22	5,36	100,00
CAR-RS-27B	45,97	2,09	12,16	13,79	0,10	8,20	8,30	2,10	0,67	0,23	5,91	99,52
IAN-II-1B	50,43	3,36	12,80	14,71	0,23	4,44	8,21	2,73	1,53	0,56	1,51	100,50
UBA-RS-30A	53,53	3,32	13,39	13,27	0,20	3,63	7,13	3,30	2,20	0,84	-0,16	100,60
UBA-RS-30B	53,79	3,25	13,42	13,19	0,19	3,60	6,88	3,31	2,25	0,84	-0,06	100,70
IAN-II-8A	48,91	3,99	12,86	14,22	0,19	4,22	6,81	3,52	1,96	1,15	1,79	99,62
IAN-II-8B	59,88	2,03	13,36	8,95	0,16	1,93	3,79	3,35	4,46	0,71	0,82	99,43
IAN-II-25A	52,75	3,61	12,65	15,40	0,20	3,25	7,01	3,03	2,26	0,65	-0,33	100,50
IAN-II-25B	52,78	3,61	12,55	15,31	0,20	3,26	6,62	2,92	2,35	0,65	0,50	100,70
IAN-III-7B	51,91	3,67	12,40	15,50	0,20	3,36	7,24	2,77	2,15	0,63	0,42	100,00
IAN-III-10B	51,77	1,11	12,96	11,20	0,18	10,52	8,71	2,62	0,94	0,22	0,44	100,70
MAR-JJ-01	58,32	2,38	13,50	9,35	0,15	2,76	4,21	3,52	4,62	0,68	1,11	100,60
PIC-I-20B	49,72	3,95	13,51	14,50	0,15	4,50	7,69	2,89	1,59	0,68	1,48	100,70
RS-31B	53,62	3,30	13,31	13,17	0,19	3,50	7,01	3,14	2,18	0,85	0,19	100,50
SSE-JJ-6B	40,88	2,83	13,66	14,05	0,18	7,47	13,10	2,26	1,38	0,81	2,77	99,39
UBA-I-12B	48,36	4,57	13,08	14,44	0,18	4,74	8,60	2,99	1,54	0,50	1,82	100,80
SSE-RS-29F	43,31	1,94	14,12	9,89	0,18	7,66	8,99	2,47	1,31	0,39	8,56	98,81
UBA-I-4D	49,70	2,63	13,09	15,12	0,22	5,06	9,16	2,65	1,01	0,37	0,94	99,95
UBA-I-31	53,12	3,67	12,75	13,98	0,18	3,27	6,92	3,07	2,27	0,66	0,51	100,40
UBA-I-32	52,57	3,61	12,55	14,91	0,20	3,30	6,90	2,92	2,20	0,64	0,26	100,10
UBA-I-6A	53,80	3,35	13,45	13,37	0,20	3,63	7,05	3,24	2,18	0,84	-0,31	100,80
UBA-II-24A	48,79	3,48	12,94	14,23	0,19	5,58	8,38	2,58	1,47	0,39	0,13	98,16
UBA-II-24B	49,05	3,75	13,11	14,86	0,20	5,83	8,49	2,60	1,33	0,36	-0,17	99,42
UBA-I-6B	53.06	3.34	13.24	13.10	0.20	3.60	6.80	3.37	2.33	0.83	-0.07	99.79

Anexo D - Dados litogeoquímicos dos diabásios do Enxame de Diques da Serra do Mar na região de Ubatua, SP. $Fe_2O_3^{(T)}$ é ferro total sob a forma de ferro férrico. PF é a medida de perda ao fogo. Valores dos óxidos e PF são expressos em %peso e demais elementos medidos em ppm.

Amostra	Ni	Cr	Со	Sc	V	Ba	Rb	Sr	Zr	Nb	Hf	Th	U
IAN-III-7A	< 20	< 20	55	27	415	627	62	476	319	32	7,8	6,0	1,4
CAR-III-13A	< 20	20	44	18	275	932	70	949	337	43	7,9	7,5	1,6
CAR-III-13B	< 20	20	44	18	277	925	70	925	364	43	8,8	7,8	1,5
CAR-RS-27A	310	370	73	18	269	211	12	379	143	18	3,6	1,5	0,4
CAR-RS-27B	300	360	66	18	270	203	15	370	124	18	3,2	1,5	0,4
IAN-II-1B	< 20	40	51	29	415	472	38	592	249	23	6,1	3,9	0,9
UBA-RS-30A	< 20	< 20	43	24	319	694	56	659	317	32	7,8	5,7	1,4
UBA-RS-30B	< 20	< 20	45	23	310	707	64	659	316	32	7,8	5,9	1,4
IAN-II-8A	< 20	< 20	64	20	425	772	45	908	253	35	6,2	5,3	1,2
IAN-II-8B	< 20	< 20	21	11	112	1338	100	662	391	46	9,7	11,1	2,8
IAN-II-25A	< 20	< 20	48	28	420	646	59	492	325	31	8,1	6,1	1,5
IAN-II-25B	< 20	< 20	50	27	413	664	61	474	320	31	7,8	6,0	1,5
IAN-III-7B	< 20	< 20	51	28	435	598	57	478	307	30	7,4	5,7	1,4
IAN-III-10B	390	610	68	23	209	333	23	273	87	14	2,2	1,2	0,2
MAR-JJ-01	< 20	50	41	13	174	1336	124	615	487	68	11,5	15,2	3,4
PIC-I-20B	< 20	40	52	27	449	515	35	666	285	24	7,2	4,0	1,0
RS-31B	< 20	< 20	45	24	312	683	57	652	339	32	8,3	5,9	1,4
SSE-JJ-6B	< 20	110	63	28	412	606	33	1164	173	44	4,3	3,7	1,1
UBA-I-2B	< 20	20	52	26	499	508	42	741	236	26	6,0	3,5	0,8
SSE-RS-29F	< 20	100	43	27	256	504	29	669	185	46	4,4	4,0	1,2
UBA-I-4D	< 20	80	54	38	495	346	21	344	152	15	4,0	2,7	0,5
UBA-I-31	< 20	< 20	61	28	429	737	63	500	327	31	7,9	5,8	1,4
UBA-I-32	< 20	< 20	70	27	420	652	56	484	304	31	7,8	5,9	1,4
UBA-I-6A	< 20	< 20	48	24	318	703	55	661	308	31	7,9	5,7	1,3
UBA-II-24A	< 20	130	51	27	467	461	32	555	208	19	5,4	3,6	0,9
UBA-II-24B	< 20	90	58	29	506	419	32	591	186	21	4,7	3,2	0,7
UBA-I-6B	< 20	< 20	51	24	306	707	55	644	309	32	7,8	5,8	1,4

Amostra	La	Ce	Pr	Nd	Sm	Gd	Th	Dv	Ho	Fr	Tm	Yh	Πu	Y
IAN-III-7A	48.6	106.0	14.30	52.5	11.3	10.8	17	97	1.8	4.6	0.63	3.8	0.55	44
CAR-III-13A	66.0	141.0	18.50	64.3	13.0	10.8	1.6	8.3	1.4	3.5	0.46	2.7	0.38	35
CAR-III-13B	68.1	144.0	19,10	66.7	13.3	10.8	1.6	8.4	1.4	3.6	0.48	2.7	0.38	34
CAR-RS-27A	15.9	35.7	4.92	19.8	4.9	5.8	1.0	5.4	0.9	2.3	0.28	1.5	0.19	22
CAR-RS-27B	17,6	38,5	5,21	20,6	5,1	5,7	1,0	5,7	1,0	2,6	0,34	1,9	0,25	26
IAN-II-1B	36,1	81,4	11,10	41,2	9,3	8,8	1,4	7,8	1,4	3,7	0,50	3,0	0,43	35
UBA-RS-30A	50,5	112,0	15,30	56,3	12,0	11,2	1,8	9,7	1,8	4,4	0,60	3,5	0,49	42
UBA-RS-30B	51,5	113,0	15,20	55,2	12,1	11,0	1,7	9,3	1,7	4,5	0,59	3,6	0,52	41
IAN-II-8A	53,9	117,0	15,60	56,2	11,4	9,8	1,5	7,4	1,3	3,2	0,41	2,3	0,30	31
IAN-II-8B	79,6	168,0	20,60	69,5	14,1	9,4	1,4	8,0	1,4	3,8	0,53	3,1	0,42	43
IAN-II-25A	48,7	107,0	14,30	52,6	11,5	10,5	1,7	9,8	1,8	4,8	0,65	3,9	0,56	44
IAN-II-25B	48,3	106,0	14,40	52,5	11,3	10,6	1,7	9,8	1,8	4,7	0,66	3,9	0,56	45
IAN-III-7B	45,9	101,0	13,60	49,3	10,7	10,0	1,6	9,1	1,7	4,5	0,61	3,7	0,56	42
IAN-III-10B	14,0	29,1	3,77	14,6	3,5	3,9	0,7	4,3	0,8	2,1	0,28	1,7	0,24	18
MAR-JJ-01	101,0	208,0	25,50	77,3	14,0	10,4	1,6	7,8	1,3	3,4	0,46	2,8	0,39	34
PIC-I-20B	39,9	87,6	12,10	44,7	9,7	9,4	1,5	8,2	1,5	3,8	0,51	3,0	0,43	35
RS-31B	51,0	114,0	15,40	57,2	12,2	11,0	1,7	9,5	1,7	4,5	0,61	3,6	0,51	42
SSE-JJ-6B	46,3	99,7	12,90	45,7	9,1	8,0	1,2	6,0	1,0	2,5	0,32	1,8	0,23	24
UBA-I-2B	36,1	81,1	10,90	40,2	8,8	7,7	1,2	6,5	1,2	2,9	0,38	2,2	0,30	27
SSE-RS-29F	38,5	80,7	10,20	34,1	6,9	6,4	1,0	5,3	1,0	2,6	0,36	2,2	0,31	23
UBA-I-4D	24,5	53,3	7,00	26,1	5,9	6,4	1,1	6,6	1,3	3,6	0,53	3,2	0,47	32
UBA-I-31	50,9	112,0	14,80	54,3	11,7	11,1	1,8	10,1	1,9	5,0	0,68	4,1	0,56	48
UBA-I-32	48,9	108,0	14,30	52,8	11,3	11,1	1,8	10,1	1,8	4,9	0,69	4,0	0,55	45
UBA-I-6A	52,3	116,0	15,50	57,1	12,2	11,6	1,8	10,1	1,8	4,8	0,64	3,7	0,53	44
UBA-II-24A	27,3	60,4	7,75	29,8	6,8	5,9	0,9	5,2	1,0	2,7	0,38	2,2	0,31	27
UBA-II-24B	28,3	62,8	8,60	30,9	7,0	6,8	1,1	6,0	1,1	2,8	0,39	2,3	0,33	25
UBA-I-6B	51,5	114,0	15,10	56,1	11,9	11,5	1,8	9,9	1,8	4,7	0,64	3,7	0,52	43

ANEXO E

ANEXO E - Métodos analíticos

As amostras foram preparadas no Laboratório Geológico de Preparação de Amostras da Faculdade de Geologia da UERJ (LGPA-UERJ). As amostras foram inicialmente lavadas sob água de torneira e destilada e secas posteriormente. A seguir, as amostras foram britadas manualmente em frações inferiores a 5 mm. As britas foram lavadas com água destilada e secas sob banho de luz por 24 horas. Depois, as britas foram colocadas num moinho de bolas de carbeto de tungstênio (WC) para moagem por cerca de vinte e cinco minutos até serem reduzidas a pó com uma granulometria inferior a 200#. As amostras pulverizadas foram acondicionadas em recipientes de plástico esterelizados e secos em forno a cerca de 120°C por pelo menos 12 horas para perda de água de umidade.

As amostras foram analisadas pelo laboratório ACTLABS no Canadá em 2009 pelo pacote 4litho. O ACTLABS obteve, em 1998, o ISO Guide 25 e o CAN-P-1579 emitidos pelo *Standards Council of Canadá*. O pacote 4litho envolve a análise de elementos maiores por ICP-AES (plasma) após fusão da amostra com metaborato ou tetraborato de lítio. Os elementos traços foram analisados por ICP-MS.

O nível de detecção para os óxidos é 0,01%peso, enquanto que para Ba, Sr, Rb, Zr, Nb e Y é menor que 4 ppm. O nível de detecção para Ni e Cr é 20 ppm, enquanto que para os elementos terras-raras é inferior a valores condríticos. A Tabela 19 mostra os valores de precisão analítica, e acurácia obtidos para óxidos, enquanto que os dados das Tabelas 20 e Tabela 21 são para elementos traços e elementos terras raras, respectivamente, utilizando-se, como comparação, os dados do padrão internacional de rochas W-2a. Tabela 19 - Valores de precisão (em %) e acurácia (em %) para os óxidos, elementos traços e elementos terras raras dos diabásios do Enxame de Diques da Serra do Mar na área de estudo. $Fe_2O_3^{(T)}$ é ferro total sob a forma de ferro férrico.

Óxido/Elemento	Precisão (%)	Acurácia (%)
SiO ₂	0,08	0,53
AI_2O_3	0,08	0,65
$Fe_2O_3^{(T)}$	0,64	2,52
MnO	0,98	10,43
MgO	0,00	2,51
CaO	0,41	0,92
Na ₂ O	1,09	2,34
K ₂ O	1,41	5,43
TiO ₂	0,05	1,89
P_2O_5	0,00	38,46

Tabela 20 - Valores de precisão (em %) e acurácia (em %) para elementos traços dos diabásios do Enxame de Diques da Serra do Mar na área de estudo.

Óxido/Elemento	Precisão (%)	Acurácia (%)
Sc	0,00	2,78
V	0,69	6,11
Ва	0,00	4,40
Sr	0,21	2,63
Y	2,33	16,67
Zr	1,31	4,26
Cr		2,17
Со	4,00	6,98
Ni		42,86
Rb	5,45	9,52
Nb	0,00	11,39
Hf	6,94	11,54
Та	4,76	0,00
W	5,22	
ТІ	33,33	50,00
Pb	27,27	18,28
Th	1,75	12,50
U	0,00	13,21

Óxido/Elemento	Precisão (%)	Acurácia (%)
La	3,10	8,00
Се	2,82	3,48
Pr	3,73	
Nd	3,93	6,92
Sm	3,81	3,03
Eu	1,40	16,00
Gd	0,99	
Tb	0,00	11,11
Dy	1,10	13,89
Ho	0,00	5,26
Er	2,27	8,00
Tm	0,00	5,26
Yb	2,78	4,76
Lu	13,46	6,06

Tabela 21 - Valores de precisão (em %) e acurácia (em %) para elementos terras raras dos diabásios do Enxame de Diques da Serra do Mar na área de estudo.

ANEXO F

Anexo F: Regressão pelo método dos mínimos quadrados

Regressão é uma técnica de ajuste de uma curva a uma população de amostras no espaço xy e do cálculo de sua respectiva equação. No caso de uma reta, a equação que relaciona as variáveis x e y é:

$$y = \mathbf{a}x + \mathbf{b}$$

onde a constante **b** é o valor de *y* dado pela reta no ponto x = 0 e a constante **a** é o coeficiente angular da reta (ou seja, o ângulo que a reta faz com o eixo *x*).

A equação permite a solução de qualquer ponto da reta para as coordenadas (x,y). As constantes **a** e **b** são determinadas pelo ajuste da reta à população de amostras.

Há várias técnicas para obter-se a equação da reta, como por exemplo:

- 1. Regressão ordinária por mínimos quadrados de y em x.
- 2. Regressão ordinária por mínimos quadrados de x em y.
- 3. Regressão pelo eixo maior.
- 4. Regressão proporcional por mínimos quadrados.
- 5. Regressão robusta.

Estas técnicas produzem resultados diferentes. O EXCEL® aplica a primeira delas. O método implica em reduzir ao mínimo a soma dos quadrados dos desvios verticais dos pontos sobre a curva. As constantes **a** e **b** são calculadas da seguinte maneira:

onde <u>x</u> e <u>y</u> são as médias das variáveis x e y, R é o coeficiente de correlação linear de Pearson e \mathbf{s}_x e \mathbf{s}_y são os desvios-padrões dos valores x e y das amostras. O valor de R é calculado por:

$$\mathsf{R} = \mathsf{S}_{x,y} / \sqrt{(\mathbf{s}_x^2 \cdot \mathbf{s}_y^2)}$$

onde $S_{x,y}$ é a covariância *x*,*y*; $S_{x,y} = \sum (x - \underline{x}) \cdot (y - \underline{y}) / (n - 1)$ para uma população *n*.

Quanto mais R se aproxima da unidade, melhor a correlação. O valor de R^2 é uma medida da fração da variância total de *x* e *y* que pode ser explicada pela relação linear. Por exemplo, se R = 0.90, então R^2 = 0.81, implicando que 81% da variância total de uma certa população pode ser explicada pela relação linear. Os valores de significância de R dependem do número de amostras incluídas na regressão (Tabela 22).

n	df	80.0%	90.0%	95.0%	99.0%	99.9%	n	df	80.0%	90.0%	95.0%	99.0%	99.9%
3	1	0.951	0.988	0.997	1.000	1.000	20	18	0.299	0.378	0.444	0.561	0.679
4	2	0.800	0.900	0.950	0.990	0.999	21	19	0.291	0.369	0.433	0.549	0.665
5	3	0.687	0.805	0.878	0.959	0.991	22	20	0.284	0.360	0.423	0.537	0.652
6	4	0.608	0.729	0.811	0.917	0.974	23	21	0.277	0.352	0.413	0.526	0.640
7	5	0.551	0.669	0.755	0.875	0.951	24	22	0.271	0.344	0.404	0.515	0.629
8	6	0.507	0.621	0.707	0.834	0.925	25	23	0.265	0.337	0.396	0.505	0.618
9	7	0.472	0.582	0.666	0.798	0.898	26	24	0.206	0.330	0.388	0.496	0.607
10	8	0.443	0.549	0.632	0.765	0.872	27	25	0.255	0.323	0.381	0.487	0.597
11	9	0.419	0.521	0.602	0.735	0.847	28	26	0.250	0.317	0.374	0.479	0.588
12	10	0.398	0.497	0.576	0.708	0.823	29	27	0.245	0.311	0.367	0.471	0.579
13	11	0.380	0.476	0.553	0.684	0.801	30	28	0.241	0.306	0.361	0.463	0.570
14	12	0.365	0.457	0.532	0.661	0.780	31	29	0.237	0.301	0.355	0.456	0.562
15	13	0.351	0.441	0.514	0.641	0.706	32	30	0.233	0.296	0.349	0.449	0.554
16	14	0.338	0.426	0.497	0.623	0.742	42	40	0.202	0.257	0.304	0.393	0.490
17	15	0.327	0.412	0.482	0.606	0.725	62	60	0.165	0.211	0.250	0.325	0.408
18	16	0.317	0.400	0.468	0.590	0.708	122	120	0.117	0.150	0.178	0.232	0.294
19	17	0.308	0.389	0.456	0.575	0.693							

Tabela 22 – Valores teste para coeficientes de correlação. n = número de amostras; df = grau de liberdade, onde df = n - 2. Por exemplo: Para 15 amostras, um coeficiente de correlação R = 0.525 (ou R^2 =0.276) é considerado significante entre 95% e 99%.