

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Geologia

Fabiane Domenech Silva

Mapeamento sísmico de intrusões ígneas na Bacia do Amazonas e suas implicações para um modelo não-convencional de geração de hidrocarbonetos

> Rio de Janeiro 2012

Fabiane Domenech Silva

Mapeamento sísmico de intrusões ígneas na Bacia do Amazonas e suas implicações para um modelo não-convencional de geração de hidrocarbonetos

Dissertação apresentada, como requisito parcial para detenção do título de Mestre, ao Programa de Pós-Graduação em Geologia, da Universidade Estadual do Rio de Janeiro. Área de concentração: Análise de Bacias.

Orientador: Prof. Dr. Egberto Pereira

Rio de Janeiro 2012

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/C

S586 Silva, Fabiane Domenech. Mapeamento sísmico de intrusões ígneas na Bacia do Amazonas e suas implicações para um modelo nãoconvencional de geração de hidrocarbonetos. / Fabiane Domenech Silva. – 2012. 91 f. il. Orientador: Egberto Pereira. Dissertação (Mestrado) - Universidade do Estado do Rio de Janeiro, Faculdade de Geologia. Bibliografia 1. Diabasio – Amazonas, Rio, Bacia – Teses. 2. Rochas ígneas - Amazonas, Rio, Bacia - Teses. 3. Petróleo - Geologia - Amazonas, Rio, Bacia - Teses. I. Pereira, Egberto. II. Universidade do Estado do Rio de Janeiro. Faculdade de Geologia. III. Título. CDU 552.323(282.281.3)

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta tese.

Assinatura

Data

Fabiane Domenech Silva

Mapeamento sísmico de intrusões ígneas na Bacia do Amazonas e suas implicações para um modelo não-convencional de geração de hidrocarbonetos

Dissertação apresentada, como requisito parcial para detenção do título de Mestre, ao Programa de Pós-Graduação em Geologia, da Universidade Estadual do Rio de Janeiro. Área de concentração: Análise de Bacias.

Aprovada em: 05/09/2012

Banca Examinadora:

Prof. Dr. Egberto Pereira Faculdade de Geologia da UERJ

Prof. Dr. René Rodrigues Faculdade de Geologia da UERJ

Dr. José Lazarino PETROBRAS

> Rio de Janeiro 2012

AGRADECIMENTOS

Agradeço primeiramente ao meu orientador, o Professor Dr. Egberto Pereira pela orientação, ensinamentos, sugestões, confiança e paciência ao longo de todo desenvolvimento deste trabalho.

Ao Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis da Faculdade de Geologia.

A Capes pelo apoio financeiro através da concessão da bolsa de estudo.

A ANP, pela disponibilização dos dados para fins desta pesquisa.

Aos professores do programa de pós-graduação em especial a René Rodrigues. Aos funcionários da pós-graduação, Diogo e Rafael.

Ao Centro Potiguar de Geociências pelo apoio nesta etapa final.

Aos meus pais que sempre me incentivam a progredir e melhorar cada vez mais. A minha querida Meg por seus carinhos nas horas mais difíceis.

Em especial a Rafael Freitas, pelo companheirismo, por toda compreensão e por ter vivido comigo esta etapa sempre ao meu lado me ajudando quando necessário.

E a todos que, de uma maneira ou de outra, nos ajudaram nesta conquista, meu muito obrigada!

"Nobody said it was easy, no one ever said it would be this hard"

RESUMO

SILVA, Fabiane Domenech. Mapeamento sísmico de intrusões ígneas na Bacia do Amazonas e suas implicações para um modelo não-convencional de geração de hidrocarbonetos. 2012. 98 f. Dissertação (Mestrado em Geologia) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2012.

A maioria das bacias paleozóicas brasileiras apresenta matéria orgânica termicamente pouco evoluída nos intervalos correspondentes ao Devoniano. O modelo mais adequado para se entender à geração, migração e acumulação de hidrocarboneto (HC) estaria relacionado às fases de intrusão de diabásio. No caso da Bacia do Amazonas, embora tenha havido condições de soterramento suficientes para a geração de hidrocarbonetos, não se deve descartar o modelo não convencional de geração como uma das formas possíveis para a origem das acumulações comerciais de óleo e gás. Acredita-se que o intervalo mais apropriado para a geração de hidrocarbonetos (HC) inclua apenas as rochas depositadas no intervalo Frasniano, embora as rochas associadas ao intervalo Llandoveriano, também, devam ser observadas com atenção. Com o intuito de compreender melhor o papel da atividade magmática na evolução da Bacia do Amazonas, foi realizado o mapeamento sísmico de soleiras de diabásio e análise de dados geoquímicos (pirólise Rock-Eval e Carbono Orgânico Total-COT). Assim, foi possível avaliar a geração/migração de hidrocarbonetos e a variação dos parâmetros geotérmicos na Bacia do Amazonas, causados pela intrusão das soleiras de diabásio. A análise sismoestratigráfica baseou-se na interpretação de 20 linhas sísmicas 2D pós-stack. na qual foram reconhecidos e mapeados horizontes sísmicos (topos de formações e corpos ígneos intrusivos), utilizando-se dados de poços e dados da literatura para correlação. As intrusões de soleiras estão presentes nas sucessões folhelhos/siltitos e anidritas das formações Andirá e Nova Olinda, respectivamente. Observou-se que as soleiras de diabásio podem estar intimamente relacionadas a digues sistematicamente orientados, tendo estes digues a função de alimentadores das soleiras. Extensas soleiras planares com segmentos transgressivos ocorrem nos níveis estratigráficos mais rasos da Bacia do Amazonas, e em maiores volumes nas formações Andirá e Nova Olinda. Em algumas regiões as soleiras desenvolvem morfologias marcantes em forma de pires. Esses corpos possuem espessuras que podem chegar a 500m. Comumente, a geometria em lençol denotada pelo paralelismo dos refletores está presente em toda extensão do mapeamento da bacia. Também foram observadas estruturas em "domo". O efeito térmico imposto pelas intrusões dos corpos ígneos, diques e soleiras foi de grande importância, pois sem o mesmo não haveria calor para a transformação da matéria orgânica. Através da análise de pirólise Rock-Eval e teor de carbono orgânico, foi possível avaliar e correlacionar os parâmetros como S₂ (potencial de geração), IH (índice de hidrogênio), S1 (hidrocarbonetos livres) e Tmax (evolução térmica) com a profundidade. Foram utilizados dados de 04 pocos, sendo que dois deles foram compilados a partir de artigos e teses publicados. As rochas potencialmente geradoras de petróleo são aquelas que apresentam COT igual ou superior a 1%. Dos quatro poços analisados, dois deles apresentam COT > 1% para a Formação Barreirinhas, mostrando que as rochas sedimentares são potencialmente geradoras de HC. Altos valores Tmax podem ser justificados pelo efeito térmico causado por

intrusões de diabásio. Os resultados de índice de hidrogênio (IH) apresentaram valores abaixo de 200mgHC/g COT, indicando o potencial gerador desta bacia para gás.

Palavras-chave: Bacia do Amazonas. Soleiras de Diabásio. Sistemas Petrolíferos.

ABSTRACT

Most Brazilian Paleozoic basins have low thermally evolved organic matter in the intervals corresponding to the Devonian. The most appropriate model for understanding the generation, migration and accumulation of HC is related to the phases of diabase intrusion. In the case of the Amazon Basin, although there have been sufficient burial conditions for hydrocarbon generation, the unconventional forms of generation should not be discharged as the one that could lead to commercial accumulations of oil and gas. It is believed that the most suitable range for the generation of hydrocarbons (HC) include only rocks deposited in the Frasniano, although rocks associated with the Llandoveriano interval also should be carefully observed. In order to better understand the role of magmatic activity in the evolution of Amazon Basin, seismic mapping of diabase sills was carried out and geochemical analysis of Rock-Eval pyrolysis and TOC. Thus it was possible to evaluate the generation/migration of hydrocarbon and variation of geothermal parameters in Amazon Basin, caused by the intrusion of diabase sills. Seismic stratigraphy analysis was based on interpretation of 20 2D post-stack seismic lines, in which were recognized and mapped seismic horizons (tops of formations and intrusive igneous bodies), using well data and literature data for correlation. Intrusion of sills are present in the successions of shales/siltstones and anidritas from Andirá and Nova Olinda formations, respectively. It was observed that diabase sills can be intimately linked to oriented dykes, which work as their feeders. These extensive planar sills with transgressive segments occur in shallower stratigraphic levels of the Amazon Basin, and in larger volumes in Nova Olinda and Andirá formations. In some regions sills develop "saucer-type" morphologies. These bodies can reach up to 500m of thickness. Commonly, the "sheet" geometry denoted by the parallelism of the reflectors is present on mapping all along the basin. "Dome" structures were also observed. The thermal effect imposed by the igneous intrusions (dykes and sills) was very important, as without it there would be no heat for the transformation of organic matter. Through the analysis of Rock-Eval pyrolysis and organic carbon content, it was possible to evaluate and correlate the parameters as S2 (potential generation), HI (hydrogen index), S1 (free hydrocarbons) and Tmax (thermal evolution) with depth. Data were collected from 04 wells in which two of them were compiled from published articles and theses. The potential source rocks are usually those that have TOC of not less than 1%. Of the four wells analyzed, two of them had TOC> 1% for Barreirinhas Formation, showing that sedimentary rocks are potentially generating HC. High Tmax values can be justified by the thermal effect caused by diabase intrusions. The results of hydrogen index (HI) had values below 200mgHC / g TOC, indicating this basin's high gas generation potential.

Keywords: Amazon Basin. Sills. Petroleum System.

LISTA DE FIGURAS

Figura 1	Mapa de localização das áreas de estudo	4
Figura 2	Mapa de localização de linhas sísmicas e poços da Área 1	6
Figura 3	Mapa de localização de linhas sísmicas e poços da Área 2	7
Figura 4	Mapa de localização de linhas sísmicas e poços da Área 3	8
Figura 5	Mapa de Localização da Bacia do Amazonas	10
Figura 6	Esforços extensionais originados de ambientes compressionais na Faixa Araguaia-Tocantis	11
Figura 7	Anomalias magnéticas ao longo do substrato da Bacia do Amazonas e o modelo de rifteamento	12
Figura 8	Carta Estratigráfica da Bacia do Amazonas	14
Figura 9	Seção geológica da Bacia do Amazonas	15
Figura 10	Carta estratigráfica simplificada indicando os sistemas petrolíferos	
	da bacia do Amazonas	21
Figura 11	Carta de eventos do Sistema Petrolífero da Bacia do Amazonas	22
Figura 12	Mapa de isópacas dos folhelhos radioativos da porção basal da Formação Barreirinha e perfil geoquímico do poço B, mostrando que os maiores valores de COT, S2 e IH são encontrados na parte basal da Formação Barreirinha	
		24
Figura 13	Mapa indicando zonas de maturação da Bacia do Amazonas	25
Figura 14	Coluna sedimentar mostrando a composição litológica e perfis de GR, resistividade e sônico de um poço na Bacia do Amazonas	26
Figura 15	Evolução da razão de transformação (TR) e eficiência de expulsão (EE) em dois poços e um falso poço (baseado em dados de seções sísmicas) na Bacia do Amazonas	
		27
Figura 16	Localização e extensão das cozinhas de óleo na Bacia do Amazonas em quatro diferentes idades	28
Figura 17	Datações radiométricas K/Ar de rochas magmáticas básicas e alcalinas e suas relações com o tempo geológico	30
Figura 18	Mapa de Isólitas de Diabásio total	32
- Figura 19	Mapa de Isólitas de Diabásio na Sequência Permo-Carbonífera	32
Figura 20	Modelos de intrusões de soleiras. A) Modelo de Francis (1982); B) Modelo de Chevallier & Woodford (1999); C) Modelo de Malthe- SØrenssen et al. (2004)	

		34
Figura 21	Mapa de localização das áreas e linhas sísmicas estudadas	35
Figura 22	Mapa de localização das linhas sísmicas e poços da área 01	37
Figura 23	Seção sísmica 0254-0360 indicando a discordância pré- Neocretácea continuamente paralela	00
Figure 24	Observa-se na seção 0254-0369 a base da Formação Alter do	39
	Chão a intrusão de soleiras de diabásio com 410m de espessura	40
Figura 25	Seção sísmica 0254-0339 destacando a discordância entre a Formação Nova Olinda e Itaituba	41
Figura 26	Seção sísmica 0244-0002, soleiras de diabásio posicionadas na sequência evaporítica, junto às camadas de halita e folhelho	42
Figura 27	Estruturas em fluxo na seção sísmica 0254-0326	44
Figura 28	Visualização da sísmica 3D exemplificando o corte em planta e vertical de uma soleira em forma de "vitória-régia" (WANDERLEY EILHO et al. 2005)	
		45
Figura 29	Seção sísmica indicando almofadas de sal, Costa (2002)	45
Figura 30	Seção sísmica 0254-0337 mostrando estruturas em "domo" das soleiras de diabásio	46
Figura 31	Mapa de localização das linhas sísmicas e poços da área 02	47
Figura 32	Seção sísmica 0254-0306, Sequência Cretácio-Terciária com zonas de falhas e dobras associadas	49
Figura 33	Seção sísmica 0055-0078, intrusões de soleiras entre folhelhos/siltitos e anidritas das Formações Andirá e Nova Olinda	50
Figura 34	Seção sísmica 0254-0312, diques sistematicamente orientados alimentadores de soleiras de diabásio	51
Figura 35	Seção sísmica 0254-0300, diques sistematicamente orientados alimentadores de soleiras de diabásio	52
Figura 36	Seção sísmica 0055-0108, diques sistematicamente orientados alimentadores de soleiras de diabásio	53
Figura 37	Visualização 3D de uma soleira em forma de pires na Bacia de Vøring na Noruega (NEUMANN et al. 2003)	54
Figura 38	Diagrama morfo-estrutural de típica soleira em forma de pires e diques. (CHEVALLIER & WOODFORD, 1999)	54
Figura 39	Seção sísmica 0254-0316 mostra morfologia em forma de pires nas soleiras de diabásio	56

Figura 40	Presença de falhamentos na seção sísmica 0254-0304	57
Figura 41	Paralelismo das camadas sedimentares e soleiras de diabásio, seção sísmica 0254-0314	58
Figura 42	Mapa de localização de linhas sísmicas e poços da área 3	59
Figura 43	Extensas soleiras planares são observadas na seção sísmica 0254-0226	61
Figura 44	Seção sísmica 0254-0183, queda de lençóis de soleiras variando a inclinação de 30° a 45°	62
Figura 45	Seção sísmica 0254-0181, com falhas transcorrentes de direções NW-SE e NE-SW	63
Figura 46	Linha 0254-0182, com falhas transcorrentes de direções NW-SE e NE-SW	64
Figura 47	Seção sísmica 0254-0219, expressivas estruturas, como formação de dobras na Formação Nova Olinda	66
Figura 48	Diques alimentadores soleiras de diabásio podem ser vistos na seção sísmica 0254-0223	67
Figura 49	Mapa de localização dos poços analisados de dados geoquímicos.	68
Figura 50A	Relação entre profundidade e porcentagem de carbono orgânico total (COT) do poço 1-AX-1-AM	69
Figura 50B	Relação entre profundidade e porcentagem de carbono orgânico total (COT) do poço 1-RX-3-AM	70
Figura 51	Relação entre profundidade e Carbono orgânico total do poço 1- PAM-1-AM	70
Figura 52	Relação entre profundidade e Carbono orgânico total do poço 1- FO-1-PA	71
Figura 53	Relação entre a profundidade e a concentração de S1 para os quatro poços analisados	72
Figura 54	Relação entre a profundidade e a concentração de S2 para os quatro poços analisados	73
Figura 55	Relação entre a profundidade e a concentração de S3 para os quatro poços analisados	73
Figura 56	Relação entre a profundidade e o potencial de geração para os quatro poços analisados	74
Figura 57	Relação entre a profundidade e o índice de produção para os quatro poços analisados	75

Figura 58	Relação entre a profundidade e a temperatura máxima dos quatro poços analisados	75
Figura 59	Relação entre a profundidade e o índice de hidrogênio para os quatro poços analisados	76
Figura 60	Relação entre a profundidade e o índice de oxigênio para os quatro poços analisados	77
Figura 61	Seção estratigráfica esquemática evidenciando as intrusões de diabásio na Bacia do Amazonas	81

SUMÁRIO

	INTRODUÇÃO	1
1.	OBJETIVOS	3
2.	LOCALIZAÇÃO DA ÁREA DE ESTUDO	4
3.	BASE DE DADOS	5
4.	METODOLOGIA	9
4.1	Aquisição de Dados	9
4.2	Interpretação de dados e Análise dos resultados	9
5.	CONTEXTO REGIONAL GEOLÓGICO	10
5.1	Bacia do Amazonas	10
5.1.1	Evolução Tectono-Sedimentar	10
5.1.2	Arcabouço Estratigráfico	13
5.2	Sistemas Petrolíferos	21
5.2.1	Sistemas Petrolíferos	21
5.2.2	Rochas Geradoras	23
5.2.3	Maturação	24
5.2.4	Reservatórios e Selos	25
5.2.5	<u>Trapas</u>	27
5.2.6	Geração e Migração	27
6.	MAGMATISMO EM BACIAS SEDIMENTARES	29
6.1	Intrusão de Soleiras nas Bacias Sedimentares Brasileiras	29
6.2	Magmatismo nas Bacias Paleozóicas Brasileiras	30
6.3	Mecanismos de intrusão de soleiras	33
7.	AVALIAÇÃO DO EFEITO TÉRMICO DAS SOLEIRAS NAS ROCHAS	
	GERADORAS DA BACIA DO AMAZONAS	35
7.1	Interpretação Sísmica	35
7.1.1	Horizontes Sísmicos Mapeados	36
7.2	Dados Geoquímicos	68
7.2.1	<u>Carbono Orgânico Total (%COT)</u>	69
7.2.2	Pirólise Rock-Eval	71
	RESULTADOS	78
	CONCLUSÕES E SUGESTÕES	82
	REFERÊNCIAS	84

INTRODUÇÃO

A Bacia do Amazonas é uma bacia intracratônica com cerca de 500.000 km². A mesma está limitada ao norte pelo Escudo das Guianas e ao sul pelo Escudo Brasileiro. O limite oeste com a Bacia do Solimões é marcado pelo Arco de Purus, ao passo que o Arco de Gurupá constitui seu limite leste. Duas sequências de primeira ordem podem ser reconhecidas nos 5000 m do preenchimento sedimentar da Bacia do Amazonas: uma paleozóica, intrudida por diques e soleiras de diabásio, e uma mesozóico-cenozóica.

Neves et al. (1989 apud CUNHA et al., 1994) admitem que a origem desta bacia esteja relacionada à dispersão de esforços ocorridos durante o fechamento do Ciclo Proterozóico Brasiliano. A faixa de dobramento Araguaia-Tocantins (ALMEIDA, 1967) está originalmente relacionada ao evento Brasiliano/Pan-Africano, marcado por esforços compressionais na direção leste-oeste e por esforços de alívio na direção norte-sul. O rifte precursor da Bacia do Amazonas poderia ter-se iniciado segundo este mecanismo, sendo sua propagação de leste para oeste, controlada pela reativação de fraturas pré-cambrianas.

Como ressalta Rodrigues (1995), a maioria das bacias paleozóicas brasileiras apresenta matéria orgânica termicamente pouco evoluída nos intervalos correspondentes ao Devoniano. Neste caso, o modelo mais adequado para se entender à geração, migração e acumulação de HC estaria relacionado às fases de intrusão de diabásio. No caso específico da Bacia do Amazonas, embora tenha havido condições de soterramento suficientes para a geração de hidrocarbonetos, não se deve descartar o modelo não convencional de geração como uma das formas possíveis da origem de acumulações comerciais de óleo e gás.

Assim, com o intuito de compreender melhor o papel da atividade magmática na evolução da Bacia do Amazonas, por meio da interpretação de dados sísmicos, pretendeu-se mapear a espessura das soleiras básicas intrudidas nas formações Andirá e Nova Olinda, assim como suas implicações na migração/geração de hidrocarbonetos.

Desta maneira, a partir de dados geoquímicos de pirólise *Rock-Eval* e COT dos horizontes geradores de hidrocarbonetos da Bacia do Amazonas (Formações

Pitinga e Barreirinhas) compilados da literatura, foi possível definir áreas mais favoráveis, entre as analisadas, para geração de hidrocarbonetos.