CAPÍTULO 6 – CONCLUSÕES: INTEGRAÇÃO DOS DADOS E COMPARAÇÃO ENTRE O METAMORFISMO DOS DIFERENTES DOMÍNIOS DO TERRENO ORIENTAL

A partir da interpretação e integração dos dados de campo, petrografia petrologia, química mineral e geotermobarometria pode-se concluir que os Domínios Cambuci, Costeiro e Italva registram distintas condições de evolução metamórfica de M₁. O Domínio Cambuci preservou um evento metamórfico mais antigo de altas temperaturas e baixas pressões enquanto que durante o metamorfismo principal (M₁) este domínio foi submetido a altas temperaturas e pressões médias. No Domínio Costeiro apenas é registrado M₁, cujas condições são de facies granulito, exceto no Tonalito da Unidade Angelim onde foram preservadas feições magmáticas. As condições metamórficas de M₁ do Domínio Italva distinguiu-se claramente dos demais domínios do Terreno Oriental da Faixa Ribeira. Este domínio foi submetido a condições de transição de facies anfibolito para granulito, a baixas pressões.

6.1 Comparação dos dados de química mineral das amostras dos domínios Cambuci, Costeiro e Italva

As projeções das composições dos principais minerais das amostras submetidas a análises químicas foram comparadas neste item.

A composição das análises realizadas nas granadas (Figura 66) revelou a supremacia do componente almandina em todas as amostras. As principais variações ocorrem na amostra representante da Unidade Angelim (IV-RM-7B) e do metabasito do Domínio Cambuci (JI-II-07-36B), ambos com índices significativos no teor de grossulária. Esta última amostra e a aquela de metapelito do Domínio Cambuci mostram um leve enriquecimento no componente piropo.

Em relação às análises de biotita (Figura 67), observou-se que tanto o metapelito (amostra IV-X-19) quanto o metabasito (JI-XI-15B) do Domínio Cambuci são mais enriquecidos em Fe do que as amostras do Domínio Costeiro. Em relação a este último domínio, pode-se notar que o metapelito da Unidade São Fidélis (IV-RM-5A) é mais rico em Fe do que o ortognaisse da Unidade Angelim (amostra IV-RM-7B).

Nas análises químicas dos ortopiroxênios houve uma homogeneidade (Figura 68). Os grãos de ortopiroxênio das amostras dos metabasitos do Domínio Cambuci são classificados como hiperstênio. Na amostra JI-II-07-36B, há uma tendência ao campo do ferro-hiperstênio.

Os clinopiroxênios do Domínio Cambuci (amostras JI-II-07-36B e JI-XI-15B) e do Domínio Italva (IV-RM-10A) foram classificados como salita, não havendo variações significativas nas composições (Figura 69).

As análises nos feldspatos mostraram uma importante variação entre os componentes albita e anortita (Figura 70).Winkler (1976) descreve que a composição dos anfibólios não constitui um indicador seguro para a determinação de grau metamórfico, como se esperava. Entretanto, Wenk & Keller (1969) estudando os Alpes, fizeram uma importante associação onde a isógrada plagioclásio An 17 + hornblenda (em anfibolitos) praticamente coincide com a isógrada plagioclásio An 17 + calcita (em margas metamorfisadas). De acordo com Winkler (1976), uma das principais modificações de rochas basalto-andesíticas durante o metamorfismo de grau forte é a formação de hornblenda, plagioclásio menos rico em anortita e comumente clinozoizita ou epidoto da parte do componente anortita que foi removida do plagioclásio (Com a temperatura decrescente e o teor de An do plagioclásio, baixa e aumenta o de clinozoizita/epidoto). Nos metabasitos dos Domínios Cambuci e no anfibolito do Domínio Italva, há uma larga variação na composição do plagioclásio. No litotipo (JI-II-07-36B), que registra o evento anterior a M₁, a composição do plagioclásio (Bytonita) é enriquecida no componente An. Já no outro anfibolito do mesmo domínio, que é claramente metamórfico e não registra o evento anterior a M1, a composição do plagioclásio (Labradorita) é menos enriquecida no componente An. No anfibolito do Domínio Italva, que foi submetido a condições mais baixas de temperatura do que os litotipos supracitados, a composição do plagioclásio (Andesina) indica um enriguecimento no teor de Na. No Domínio Costeiro ocorre uma significativa variação entre Na e Ca. O plagioclásio do litotipo representativo da Unidade Angelim (ortognaisse) é menos enriquecido em Ca do que o plagioclásio encontrado na Unidade São Fidélis (paragnaisse). Como a fusão em geral não é cálcica, esta evidência possivelmente indica que a fonte da Unidade Angelim é a Unidade São Fidélis.

As análises realizadas em anfibólios revelaram que aqueles da amostra JI-XI-15B (Domínio Cambuci) são mais enriquecidos em Mg do que os da amostra IV-RM-10A (Domínio Italva). Esta comparação pode ser visualizada nas Figuras 78 e 79.

Legenda:

núcleos dos grãos minerais	bordas dos grãos minerais	Amostras
	000000	JI-II-07-36B (Domínio Cambuci) JI-XI-15B (Domínio Cambuci) IV-X-19 (Domínio Cambuci) IV-RM-7B (Domínio Costeiro - Unidade Angelim) IV-RM-5A (Domínio Costeiro - Unidade São Fidélis) IV-RM-10A (Domínio Italva)

coroas de granada da amostra JI-II-07-36B (Domínio Cambuci)
coroas de hornblenda da amostra JI-XI-15B (Domínio Cambuci)
coroas de biotita da amostra IV-X-19 (Domínio Cambuci)
análises em porfiroblástos de plagioclásio da amostra IV-RM-7B (Domínio Costeiro - Unidade São Fidélis)

Figura 66: Diagrama de composição das granadas das amostras dos domínios do

Terreno Oriental.

Legenda:

Δ

 ∇

 ∇

núcleos dos grãos minerais	bordas dos grãos minerais	Amostras
	00000	JI-II-07-36B (Domínio Cambuci) JI-XI-15B (Domínio Cambuci) IV-X-19 (Domínio Cambuci) IV-RM-7B (Domínio Costeiro - Unidade Angelim) IV-RM-5A (Domínio Costeiro - Unidade São Fidélis) IV-RM-10A (Domínio Italva)

- coroas de granada da amostra JI-II-07-36B (Domínio Cambuci)
 - coroas de hornblenda da amostra JI-XI-15B (Domínio Cambuci)
 - coroas de biotita da amostra IV-X-19 (Domínio Cambuci)
 - análises em porfiroblástos de plagioclásio da amostra IV-RM-7B (Domínio Costeiro Unidade São Fidélis)

Figura 67: Diagrama de composição dos filossilicatos das amostras dos domínios do Terreno Oriental.

Legenda:

 ∇

núcleos dos grãos minerais	bordas dos grãos minerais	Amostras
	000000	JI-II-07-36B (Domínio Cambuci) JI-XI-15B (Domínio Cambuci) IV-X-19 (Domínio Cambuci) IV-RM-7B (Domínio Costeiro - Unidade Angelim) IV-RM-5A (Domínio Costeiro - Unidade São Fidélis) IV-RM-10A (Domínio Italva)

- coroas de granada da amostra JI-II-07-36B (Domínio Cambuci)
- coroas de hornblenda da amostra JI-XI-15B (Domínio Cambuci)
- Coroas de biotita da amostra IV-X-19 (Domínio Cambuci)
 - análises em porfiroblástos de plagioclásio da amostra IV-RM-7B (Domínio Costeiro - Unidade São Fidélis)

Figura 68: Diagrama de composição dos ortopiroxênios das amostras dos domínios do Terreno Oriental.


```
Legenda:
```

JI-II-07-36B (Domínio Cambuci) JI-XI-15B (Domínio Cambuci)	
Image: Second state sta	m) idélis)

- ∇ coroas de granada da amostra JI-II-07-36B (Domínio Cambuci) ∇
 - coroas de hornblenda da amostra JI-XI-15B (Domínio Cambuci)
- ∇ coroas de biotita da amostra IV-X-19 (Domínio Cambuci)
- ∇ análises em porfiroblástos de plagioclásio da amostra IV-RM-7B (Domínio Costeiro - Unidade São Fidélis)

Figura 69: Diagrama de composição dos clinopiroxênios das amostras dos domínios do Terreno Oriental.

Legenda:

∇ ∇

 ∇

núcleos dos grãos minerais	bordas dos grãos minerais	Amostras
	000000	JI-II-07-36B (Domínio Cambuci) JI-XI-15B (Domínio Cambuci) IV-X-19 (Domínio Cambuci) IV-RM-7B (Domínio Costeiro - Unidade Angelim) IV-RM-5A (Domínio Costeiro - Unidade São Fidélis) IV-RM-10A (Domínio Italva)
COI	roas de granada da ar	nostra JI-II-07-36B (Domínio Cambuci)

coroas de hornblenda da amostra JI-XI-15B	(Domínio Cambuci)
---	-------------------

coroas de biotita da amostra IV-X-19 (Domínio Cambuci)

análises em porfiroblástos de plagioclásio da amostra IV-RM-7B (Domínio Costeiro - Unidade São Fidélis)

Figura 70: Diagrama de composição dos feldspatos das amostras dos domínios do Terreno Oriental.

Legenda:

núcleos dos grãos minerais	bordas dos grãos minerais	Amostras
	000000	JI-II-07-36B (Domínio Cambuci) JI-XI-15B (Domínio Cambuci) IV-X-19 (Domínio Cambuci) IV-RM-7B (Domínio Costeiro - Unidade Angelim) IV-RM-5A (Domínio Costeiro - Unidade São Fidélis) IV-RM-10A (Domínio Italva)

∇	coroas de granada da amostra JI-II-07-36B (Domínio Cambuci)
∇	coroas de hornblenda da amostra JI-XI-15B (Domínio Cambuci)
∇	coroas de biotita da amostra IV-X-19 (Domínio Cambuci)
∇	análises em porfiroblástos de plagioclásio da amostra IV-RM-7B (Domínio Costeiro - Unidade São Fidélis)

Figura 71: Diagrama de composição dos anfibólios das amostras dos domínios do Terreno Oriental.

6.2 Metamorfismo M₁ no Domínio Cambuci

No Metamorfismo M₁, os valores de temperatura do equilíbrio 1, obtidos nos paragnaisses do Domínio Cambuci, coincidem com aqueles do equilíbrio 1 dos metabasitos do mesmo domínio. De acordo com a análise petrográfica, esta analogia se mostra extremamente consistente. O equilíbrio mencionado possivelmente representa as condições termais do auge de M₁. As médias das temperaturas encontradas foi de aproximadamente 720°C nos paragnaisses e por volta de 750°C nos metabasitos.

Os baixos valores de temperatura de M_1 encontrados nos equilíbrios 2 e 3 dos metapelitos mostram que o par granada e biotita (nos metapelitos) continuaram a se equilibrar durante o resfriamento a partir do ápice térmico de M_1 , no caminho do metamorfismo retrógrado. Portanto, os valores entre 650 – 610°C representam, provavelmente, as temperaturas de fechamento deste sistema de trocas catiônicas.

Para o cálculo das condições de pressão, foi utilizado o geobarômetro grt-rtsil-ilm (GRAIL – Bohlen *et al.*, 1983). Nos metapelitos, os resultados são \approx 6,6Kbar no equilíbrio 1 (auge de M₁) e de \approx 5,8 Kbar no equilíbrio 2. Nos metabasitos, o barômetro empregado foi cpx-pl-qtz (Ellis, 1980) e forneceu valores médios de aproximadamente 6,9 Kbar para o equilíbrio 1. Possivelmente M₁ se desenvolveu sob condições de pressões intermediárias e, posteriormente, houve uma leve descompressão durante seu arrefecimento. Estas condições também foram determinadas a partir da cristaloquímica de anfibólios, cujos resultados indicam que as condições metamórficas do Domínio Cambuci são correlacionáveis mais claramente àquelas de terrenos de média pressão (Dalradian, Escócia e Haast River, Nova Zelândia), de acordo Laird & Albee (1981).

A seguir serão descritas as etapas de evolução de M₁ para os paragnaisses do Domínio Cambuci.

Em função da esperada obliteração de texturas, estruturas e paragêneses de T mais baixa por aquelas de T mais alta, não foi possível observar e estudar a etapa progressiva do metamorfismo M₁. Portanto, a história que se segue tem início já no pico de M1. Etapa 1: Houve um pacote litológico sobrejacente ao conjunto litológico do Domínio Cambuci onde o pico do metamorfismo M_1 registrou a geração de paragêneses de facies granulito e também a formação de ortopiroxênio. A paragênese grt-rt-ilm-alsqtz registra os valores de pressão reinante durante o pico de M_1 em \approx 6,6 Kbar.

Etapa 2: Diminuição da temperatura e entrada de H₂O no sistema, registrada pela formação de coroas de biotita ao redor de grãos de granada. Ocorre também o declínio de pressão devido à isostasia e à erosão, já em curso, em conseqüência do abatimento do orógeno.

As etapas seguintes podem ser descritas para a evolução dos metabasitos do Domínio Tectônico Cambuci.

Etapa 1: Ocorrência de evento térmico anterior a M_1 (magmático ou metamorfismo M_0), registrado em uma amostra de metabasito hospedada em leucocharnockito São João do Paraíso. Esse registro indica condições de facies granulito (opx+cpx+plg+op – equilíbrio 0), a pressões intermediárias, porém mais baixas do que aquelas necessárias à formação de granada. Tupinambá (1993b) descreveu que os enclaves de rochas metamáficas nesta região sofreram metamorfismo pré-foliação principal (pós-D_{n+1} e pré-D_{n+2}), de caráter estático, sob condições da facies granulito. Os dados petrológicos/petrográficos deste autor para este evento (clinopiroxênio+ ortopiroxênio+hornblenda) já indicavam que as condições de pressão haviam sido mais baixas do que o metamorfismo procedente.

Etapa 2: O aumento posterior da pressão litoestática, relacionado provavelmente a M_1 , é registrado pela formação de coroas de granada almandina ao redor de piroxênios do equilíbrio 0, o que aponta para a colocação destas rochas a profundidades mais altas. Isto está, provavelmente, relacionado ao empilhamento dos diferentes domínios tectônicos do Terreno Oriental, possivelmente com a chegada das nappes representadas pelos Domínios Costeiro e Italva. Esta etapa caracteriza-se portanto por um relevante aumento de pressão. Tupinambá (1993b) descreveu para este evento o segundo pico metamórfico, equivalente ao M_1 neste trabalho, que as rochas metabásicas atingiram facies granulito de pressão elevada, desenvolvido simultaneamente à fase D_{n+2} . Este autor também relatou que os

minerais formados neste pico são todos sin-cinemáticos (associação de agregados poligonais de granada simplectítica, clinopiroxênio e minerais opacos).

Etapa 3: Esta etapa representa o evento de resfriamento regional e é caracterizada pelas condições de formação do equilíbrio 2 (bordas de cpx, hbl, grt e pl). A curva regular sugere que o declínio, tanto da temperatura quanto da pressão possa ser atribuído a processos de erosão e à isostasia.

6.3 Metamorfismo M₁ no Domínio Costeiro

Neste domínio, o pico do metamorfismo M₁ é caracterizado pelo equilíbrio 1 onde a temperatura nos ortognaisses da Unidade Angelim (Tm \approx 785°C) foi superior àquela das rochas paraderivadas da Unidade São Fidélis (Tm \approx 750°C). Baseado no fato de que os ortognaisses da Unidade Angelim são intrusivos nas rochas paraderivadas da Unidade São Fidélis e também de que as amostras analisadas foram coletadas em áreas muito próximas, é provável que estas duas unidades tenham sido submetidas às mesmas condições de pressão (\approx 6,5 - 8 Kbar, obtida para o paragnaisse) durante o evento metamórfico,

Nas duas Unidades do Domínio Costeiro, foi registrada uma fase de resfriamento (equilíbrio 2), sendo nos ortognaisses da Unidade Angelim, variações próximas a 115°C, e nos paragnaisses da Unidade São Fidélis, 110 °C. O par grt-bt continuou se reequilibrando durante a fase de resfriamento na unidade paraderivada do Domínio Costeiro, assim como ocorreu nos paragnaisses do Domínio Cambuci. Houve uma descompressão ($\Delta P \approx -1.8$ Kbar), registrada no paragnaisse da Unidade São Fidélis.

São descritas as seguintes etapas para a evolução das rochas do Domínio Tectônico Costeiro.

Etapa 1: Intrusão dos tonalitos correspondentes à Unidade Angelim (temperatura elevada). A fase final do resfriamento da rocha foi registrada pela ex-solução de K-feldspato em plagioclásio, fornecendo temperaturas médias de, aproximadamente, 603 ± 18°C.

Etapa 2: Caracteriza-se pelo auge do metamorfismo progressivo M₁, atingindo facies granulito de Tm \approx 785°C (Ortognaisses da Unidade Angelim) e Tm \approx 750°C (paragnaisses da Unidade São Fidélis) e P \approx 6,4 – 8,2 Kbar. O pico do metamorfismo M₁ é associado a altas temperaturas e pressões intermediárias (pressão exercida por domínios sobrejacentes a este domínio.

Etapa 3: Houve o declínio da temperatura, com $\Delta T \approx -110$ °C. Também ocorreu uma taxa descompressão $\Delta P \approx -1.8$ Kbar, influenciada possivelmente pela erosão e isostasia.

Os valores de P e T para M1, obtidos neste trabalho, se assemelham àqueles de Santos et al., (2005), que para a Unidade São Fidélis o valor médio de temperatura para o pico metamórfico

6.4 Metamorfismo M₁ no Domínio Italva

Os valores de temperatura de pico do metamorfismo M₁ no Domínio Italva (Tm \approx 720 ± 20°C) são ligeiramente menores se comparados àqueles dos demais domínios estudados neste trabalho. As evidências mostram, claramente, que este domínio foi submetido a condições de facies anfibolito superior. No equilíbrio 2 não há uma grande variação dos valores de T (Tm \approx 697°C) se comparados àqueles obtidos para o equilíbrio 1. Isso pode ser uma conseqüência da dificuldade de reequilíbrio entre anfibólio e plagioclásio durante o resfriamento do evento metamórfico, uma vez que a reação da qual participam são do tipo *net transfer*. Estudos anteriores a partir de métodos petrográfico/petrológicos de campo, como Tupinambá 1993b, revelam que este domínio tenha sido submetido a condições de facies anfibolito superior.

A determinação da pressão do auge do metamorfismo M₁ baseou-se em três diferentes critérios: composição dos anfibólios, cujos dados indicam semelhanças de condições báricas com terrenos de baixa pressão (Abukuma - Japão); estudo petrográfico-petrológico, cujas paragêneses caracterizam metamorfismo sob fácies anfibolito superior; e relações de campo que indicam associações com o metapelito portador de paragênese com granada almandina. As diferentes etapas determinadas para a evolução dos anfibolitos Domínio Italva durante M₁ são descritas a seguir:

Assim como ocorreu para os demais terrenos, a etapa progressiva de M_1 não pode ser estudada, uma vez que paragêneses, texturas e estruturas formadas sob condições de T mais altas foram obliteradas por aquelas formadas sob T mais altas. Assim, a história descrita a seguir tem início na etapa de pico de M_1 .

Etapa 1: Evidências petrográficas e o caminho de evolução P-T-t (Figura 70) mostram que este domínio, cujos anfibolitos são destituídos de ortopiroxênio, atingiu a zona de transição entre as facies anfibolito e granulito. Os valores de T para o auge do metamorfismo M1 é de aproximadamente 720°C e P estimado em torno de 5 Kbar.

Etapa 2: As variações de temperatura (resfriamento) são pouco significativas e são suportados por dados petrográficos (formações de biotita nas bordas de grãos de hornblenda).

6.5 Caminhos de evolução metamórfica para as litologias dos Domínios Tectônicos do Terreno Oriental da Faixa Ribeira

A Figura 72 mostra o caminho P-T-t para todos os conjuntos de rocha analisados quimicamente neste trabalho na região entre Bom Jesus de Itabapoana e Cardoso Moreira. Estes caminhos foram construídos com base nas médias de pressões e de temperaturas definidas anteriormente (Tabela 26). A Figura 73 mostra as principais ferramentas para a determinação dos valores de pressão e temperatura. Para comparação, a Figura 74 relaciona o as condições de metamorfismo dos diferentes domínios estudados na presente pesquisa com alguns terrenos metamórficos clássicos de alta, média e baixa pressão. Os Domínios Cambuci e Costeiro mostram que a volta do metamorfismo M₁ ocorreu sob condições báricas equivalentes áquelas de séries barrowianas. No Domínio Italva, o metamorfismo M₁ pode ser supostamente comparado àquele de Terrenos de baixa pressão.

Tabela 26: Médias dos valores de pressão e temperatura para cada amostra dos domínios estudados. (em azul valores inferidos a partir dos dados obtidos para litotipos do mesmo domínio).

		M0 ou l		M1		M1		M1	
Domínio	Amostra			Equilíbrio 1		Equilíbrio 2		Equilíbrio 3	
	Amoona		Р	P		T (9C)	Р	Т	Р
		1(0)	(Kbar)	1(0)	(Kbar)	1(0)	(Kbar)	(°C)	(Kbar)
	IV-X-19			718	6,62 ±	640.81	5,8 ±	613,	
Cambuci		-	-	710	0,64	049,01	0,68	76	-
	JI-II-07-	797 5	-	720,79	6,91 ±			-	-
	36B	101,5			1,9	-	-		
				750.0	6,91 ±	712 18	5,8 ±		
	JI-XI-13D	-	-	152,2	1,9	112,10	<i>0,6</i> 8		-
	IV_PM_7B	603.8		785	8,2 ±	660.2	6,44 ±	_	_
Costeiro		000,0	_	700	0,25	003,2	1,28	_	_
				752.24	8,2 ±	642	6,44 ±		
		-	-	132,24	0,25	042	1,28	-	-
Italva	IV-RM-			720 ±		607			
	10A	-	-	20	-	097	-	-	-

Figura 72: Caminho P-T dos litotipos dos Domínios Cambuci, Costeiro e Italva.

- **– – –>>** Rochas metapelíticas da Unidade São Fidélis (Domínio Costeiro) (amostra IV-RM-5A)
- >>---->> Anfibolitos do Domínio Italva (amostra IV-RM-10A)

Figura 73: Caminho P-T dos litotipos dos Domínios Cambuci, Costeiro e Italva de acordo com as ferramentas utilizadas.

Figura 74: Caminho P-T dos litotipos dos Domínios Cambuci, Costeiro e Italva comparados com campos de gradientes metamórficos para vários terrenos no mundo. Diagrama de Turner (1981).

No Domínio Cambuci foi possível estimar um caminho anti-horário devido aos dois registros de eventos térmicos. O primeiro evento, seja magmático ou metamórfico, ocorreu sob condições de altas temperaturas e pressões intermediárias. O segundo evento, claramente metamórfico, desenvolveu-se sob condições de altas temperaturas e pressões intermediárias, porém mais elevadas que o primeiro evento. Para as unidades analisadas do Costeiro, não foi possível estimar se o caminho de evolução foi horário ou anti-horário. Esta indefinição devese ao fato das litologias registrarem apenas o pico e a volta do metamorfismo M₁. No entanto, Kuhn et al. (2004) sugeriu um caminho horário para as rochas deste domínio a partir de de três eventos metamórficos. O primeiro ocorreu sob condições de alta P e temperaturas baixas. O segundo evento foi submetido a condições de pressão semelhantes ao anterior, porém com valores de temperatura maior. O último estágio metamórfico descrito por Kühn et al. (2004) caracterizou-se por uma fase de descompressão e resfriamento. Este autor determinou para o segundo evento T(700-850°C) e P(7 Kbar) e para o terceiro que evento houve uma queda nos valores de T e P observadas pelas reações texturais. Estão são semelhantes aos encontrados neste estudo para o equilíbrio 1 e o equilíbrio 2 do evento metamórfico M_1 , respectivamente. Portanto, somente o pico e o caminho retrógrado do metamorfismo M1 nas rochas do Domínio Costeiro foram registrados, não sendo possível, no presente trabalho, afirmar se o caminho de evolução para este domínio foi horário ou anti-horário. A construção de caminhos P-T-t completos é uma tarefa ainda difícil de ser realizada. Esta complexidade é atribuída à freqüente obliteração total das evidências do caminho progressivo e os comuns reajustes advindos do caminho retrogressivo (Bohlen, 1987; Harley, 1989; Spear, 1993). O Domínio Costeiro atingiu maiores temperaturas que os demais domínios do Terreno Oriental devido a intrusão de rochas plutônicas do Arco Magmático Rio Negro.

Harley (1989) compilou dados de caminhos P-T de terrenos granulíticos no mundo e determinou caminhos do tipo ITD (caracterizado por um período de descompressão quase isotérmica) e IBC (caracterizado por um período de resfriamento quase isobárico).

Sugere-se neste estudo que o provável caminho seja o do tipo IBC para o metamorfismo granulítico das rochas dos Domínios Cambuci e Costeiro. De acordo com Harley, 1989, modelos de resfriamento isobárico em granulitos máficos podem gerar texturas coroníticas com granada secundária no contato de ortopiroxênio-

plagioclásio ou o sobrecrescimento de granada tardia. Estas texturas geralmente resultam da interseção de reações multivariantes representado pelo exemplo simplificado do equilíbrio: ortopiroxênio + plagioclásio = granada + quartzo + clinopiroxênio. Na amostra JI-II-07-36B podemos observar essa reação. .Estas considerações também podem ser atribuídas a uma moderada a baixa variação entre os valores báricos do pico metamórfico e aqueles do equilíbrio interpretado como a temperatura mínima para o resfriamento do evento, além de relevantes taxas de resfriamento, ou seja a taxa de resfriamento é maior que a taxa de descompressão. No Domínio Cambuci, foi obtido $\Delta P \approx -2 a -1$ Kbar e $\Delta T \approx -150 a - 100 \ ^\circ$ C. No Domínio Costeiro, os valores obtidos foram: $\Delta P \approx -3,5 a -0,5$ Kbar e $\Delta T \approx -200 a -130 \ ^\circ$ C.

6.6 Comparação dos domínios da Faixa Ribeira a partir da cristaloquímica dos anfibólios

Em rochas metabásicas dos domínios Cambuci e Italva foram efetuadas análises químicas em anfibólios, utilizadas para comparação com as composições deste mineral em terrenos de alta, média e baixa pressão, como visto no capítulo 6, itens 6.2.3 e 6.4.3. Dados do Complexo Juiz de Fora, referentes a anfibólios interpretados como correspondentes a M_0 (Duarte, 1998), também foram utilizados na comparação. Diferentemente do esperado, todos os domínios revelaram condições báricas muito semelhantes (Figura 75), tendo seus anfibólios projetado dominantemente nos campos do terreno de baixa pressão (Abukuma-Japão) e, em alguns diagramas, naquele referente ao terreno Haast River (Nova Zelândia), de média pressão. Estas observações podem sugerir que tenha ocorrido um evento, regional, posterior a M_1 , onde houve o reequilíbrio dos sistemas para condições de pressão mais baixa.

Figura 75: Diagramas de comparação dos Domínios da Faixa Ribeira mostrando as projeções das composições dos anfibólios. Campos de diferentes posições de P definidos por Laird & Albee (1981).

REFERÊNCIAS

ALMEIDA, F.F.M. 1971. Geochronological Division of the Precambrian of South America. *Rev. Bras. Geoc.*, São Paulo, 1(1): 13-21.

ALMEIDA, F.F.M.; AMARAL, G.; CORDANI, U.G.; KAWASHITA, K. 1973. The Precambrian evolution of the South American Cratonic Margin South of Amazonas River. In: *The Ocean Basin and Margins* (Nairn & Stille, Eds.), 1:411-446, Plenum, New York.

ALMEIDA, F.F.M. 1977. O Cráton de São Francisco. Rev. Bras. Geoc., 7:349-364.

ALMEIDA, F.F.M. 1981. O Cráton de Paramimirm e suas relações com o Cráton do São Francisco e suas Faixas Marginais, 1, anais... 1981, Salvador, CBPM-SBG, p. 1-10.

ALMEIDA, J.C.H.; TUPINAMBÁ, M.A.; HEILBRON, M.; And TROUW, R. 1998. Geometric and kinematic analysis at the central tectonic boundary of the Ribeira belt, southeastern Brazil. In: Congresso Brasileiro de Geologia, Belo Horizonte, 1998, *Anais...* SBG, p. 32.

ALMEIDA, J.C.H. 2000. Zonas de cisalhamento dúctil de alto grau do Médio Vale do Rio Paraíba do Sul. Tese de Doutorado, IGCE, Universidade Estadual Paulista, 190 pp.

ANDERSEN, D. J. & LINDSLEY, D. L. 1988. Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. *American Mineralogist*, 73, 714–726

BARBOSA, A.L. & SAD, J.H.G. 1983a. Reinterpretação das Séries Juiz de Fora e Paraíba, em Minas Gerais e no Rio de Janeiro. IN: Simp. Geol. MG., 2, Belo Horizonte, 1983. *Anais...* Belo Horizonte SBG. P. 1-15.

BARBOSA, A.L. & SAD, J.H.G. 1983b. Petrografia dos Charnockitos e Rochas Afins do Complexo Juiz de Fora. RJ/MG. IN: Simp. Geol. Mg., 2, Belo Horizonte, 1983. *Anais...* Belo Horizonte SBG. P. 63-74.

BARBOSA, A.L. & SAD, J.H.G. 1983c. Geoquímica e Petrologia dos Charnockitos e Rochas Afins do Complexo Juiz de Fora. RJ/MG. IN: Simp. Geol. Mg., 2, Belo Horizonte, 1983. *Anais...* Belo Horizonte SBG. P. 75-84.

BENTO DOS SANTOS, T.; MUNHÁ, J.; TASSINARI, C.G. & DIAS NETO, C. 2005-Geotermobarometria em rochas metamórficas na Região de São Fidelis, RJ, SE Brasil. Atlas do VIII Congresso de Geoquímica dos Países de Língua Portuguesa, 1: 95-100.

BHATTACHARYA, A., KRISHNAKUMAR, K. R., RAITH., M. SEN, S. K. 1991. An improved set of a-X parameters Fe-Mg-Ca garnets and refinements of the ortopyroxene-garnet thermometer and the ortopyroxene-garnet-plagioclase-quartz barometer. Journal of Petrology 32, 629-656.

BHATTACHARYA, A., MOHANTY, L., MAJI, A., SEN, S. K., and RAITH, M. 1992, Non-ideal mixing in the phlogopite annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite garnet geo thermometer: Contrib. Miner. Petrol., v. 111, n^o . 1, p. 87.-93.

BATISTA, J.J. 1984. Caracterização dos processos geológico-evolutivos précambrianos na Região de São Fidélis, norte do Estado do Rio de Janeiro. Tese de Doutoramento, Instituto de Geociências, Universidade de São Paulo, 123pp.

BATISTA, J.J. 1986. Processos geológico-evolutivos da porção setentrional do Cinturão Ribeira e na área estável adjacente. In: SBG, Congr. Bras. Geol., 34, Anais, v.2, p. 722-727.

BOHLEN, S. R. & LIOTTA, J. J. 1986. A barometer for garnet amphibolites and garnet granulites. Journal of Petrology, 27, 1025–1056.

BOHLEN, S. R., PEACOR, D. R. & ESSENE, E. J. 1980. Crystal chemistry of metamorphic biotite and its significance in water barometry. American Mineralogist, 65, 55–62.

BOHLEN, S. R., WALL, V. J. & BOETTCHER, A. L. 1983a. Experimental investigations and geologic applications of equilibria in the system FeO-TiO2-Al2O3-SiO2-H2O. American Mineralogist, 68, 1049–1058.

BUDDINGTON, A. F. & LINDSLEY, D. H. 1964. Iron-titanium oxide minerals and their synthetic equivalents. Journal of Petrology, 5, 310–357.

CAMPANHA G.A.C. 1981. O lineamento Além Paraíba na área de Três Rio (RJ), Ver. Brás, Geoc., 11: 159-171,.

CORDANI, U.G.; MELCHER.; G.C. & ALMEIDA, F.F.M. 1967. Outline of Precambrian Geochronology of South America. Canadian Journal of Earth Science, 5: 629-632.

CORDANI, U.G.; DELHAL, J.; LEDENT, O. 1973. Orogeneses Supeposeés das le Précambrien du Brésil sud-oriental (États du Rio de Janeiro et de Minas Gerais). Rev. Bras. Geoc., 3 (1): 1-22.

CORDANI, U.G. & BRITO NEVES, B.B. 1982. The geologic evolution of South america during the Archean and Early Proterozoic. Rev. Bras. Geoc. V.12: 78-88.

COSTA, L.M.; BAPTISTA, J.I.; SOUZA, B. 1978a. Texto explicativo da Folha Geológica São jõa do Paraíso. Niterói, DRM/RJ.

COSTA, L.M.; BAPTISTA, J.I.; SOUZA, B. 1978b. Texto explicativo da Folha Geológica Italva. Niterói, DRM/RJ.

EBERT, H., 1957. A Tectônica do sul do Estado de Minas Gerais e regiões adjacentes. Rio de Janeiro, DNPM/DGM, p. 97-107. (relatório Anual do Diretor).

DEER, W.A., HOWIE, R.A. & ZUSSMANN, J. 1966. An Introduction to the rock forming minerals. Longmas, New York. 513 p.

DOCKA, J. A., BERG, J. H. & KLEWWIN, K. H. 1986. Geothermometry in the Kiglapait aureole. II. Evaluation of exchange thermometry in a well-constrained setting. Journal of Petrology, 27, 605–626.

DUARTE, B. P.1998. Evolução tectônica dos Ortognaisses dos Complexos Juiz de For a Mantiqueira na Região de Juiz de Fora: Geologia, Petrologia e Geoquímica. São Paulo, IGC-USP. Tese Dout., 284p.

DUARTE, B.P.; TUPINAMBÁ, M.; NOGUEIRA, J.R.; HEILBRON, M.; ALMEIDA, J.C.H.; MARQUES, R.A.; FIGUEIREIDO, E.; RIBEIRO, I.S.; MOUTA, F.M; SILVA, J.C.; MONTEIRO, A.C.; SILVA, R.R.T.; CHISPIM, J.S.; MOTOKI, A.; PORTO JR, R.; RAGATKI, D.; GERALDES, M. (no prelo). Mapa Geológico da Folha Itaperuna (1:100.000). In: Pronageo – Programa Nacional de Geologia – MCT/CPRM-UERJ. Livro em CD-ROM. Coordenação: Monica Heilbron. Edição: Serviço Geológico do Brasil (CPRM).

EBERT, H., 1968. Ocorrência da facies granulítica no sul de Minas Gerais e em áreas adjacentes, em dependência de sua estrutura orogênica: Hipótese sobre sua origem. An., Acad. Brás. Ciênc., 40: 215-229.

EBERT, H., HASSUI, Y., 1998. transpressional tectonics and strain partitioning during oblique collision between three plates in the precambrian of southeast Brazil. In: Holdsworth, R.E., Stranchan, R.A., dewey, J.F. (Eds.), Continental transpressional and transtensional tectonics. Geol. Soc. London. Spec. Publ. 135, 231-252.

ECKERT, J. O., Jr, NEWTON, R. C., and KLEPPA, 0. J., 1991, ΔH of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in CMAS system by solution calorimetry of stoichiometric mineral mixes: Am. Mineralogist, v. 76, no. 1-2, p. 148-160.

ELLIS, D. J. (1980): Osumilite-sapphirine-quartz granulites from Enderby Land, Antartica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contrib. Mineral. Petrol., 74, 201-210.

ELLIS, D. J. & GREEN, D. H. (1979): An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., 71, 13-22.

ESSENE, E. J. & BOHLEN, S. R. 1985. New garnet barometers in the system CaO-FeO-Al2O3-SiO2-TiO2 (CFAST). Eos (Transactions of the American Geophysical Union), 66, 386.

FERRY, J.M. & SPEAR, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66, 113–117.

FONSECA, M.J.G. 1998. Mapa geológico do Estado do Rio de Janeiro. Escala 1:400.000. Texto explicativo. Rio de Janeiro, DNPM, 141p.

FUHRMAN, M. L. & LINDSLEY, D. H. 1988. Ternary feldspar modeling and thermometry. American Mineralogist, 73, 201–215.

GANGULY, J. & SAXENA, S. K. 1984. Mixing properties of aluminosilicate garnets: constraints from natural and experimental data and applications to geothermobarometry. American Mineralogist, 69, 88–97.

GASPARIK, T. 1984. Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO-Al2O3-SiO2. Geochimica et Cosmochimica Acta, 48, 2537–2546.

GHENT, E. D. 1976. Plagioclase-garnet-Al2SiO5-quartz: a potential geobarometergeothermometer. American Mineralogist, 61, 710–714. GHENT, E. D. & STOUT, M. Z. 1984. TiO2 activity in metamorphosed pelitic and basic rocks: principles and applications to metamorphism in southeastern Canadian Cordillera. Contributions to Mineralogy and Petrology, 86, 248–255.

GHIORSO, M. S. 1984. Activity/composition relations in the ternary feldspars. Contributions to Mineralogy and Petrology, 87, 282–296.

GRAHAM, C. M. & POWELL, R. 1984. A garnet-hornblende geothermometer and application to the Peloma Schist, southern California. Journal of Metamorphic Geology, 2, 13–32

GREEN, N. L. & USDANSKY, S. I. 1986b. Ternary feldspar mixing relations and thermobarometry. American Mineralogist, 71, 1100–1108.

GROSSI-SAD, J.H.G., DUTRA, C.V., 1988. Chemical composition of supracrustal rocks from Paraiba do Sul Group, Rio de Janeiro State, Brazil. Geochimica Brasiliensis, 7: 143-174.

HARLEY, S. L. 1984a. The solubility of alumina in orthopyroxene coexisting with garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2. Journal of Petrology, 25, 665–696.

HARLEY, S. L. 1989. The origins of granulites: a metamorphic perspective. Department of Earth Sciences, University of Oxford. Geol. Nag. 126 (3). Pp 215-247.

HASELTON, H. T., Jr, HOVIS, G. L. HEMINGWAY, B. S. & ROBIE, R. A. 1983. Calorimetric investigation of the excess entropy of mixing in albite-sanidine solid solutions: lack of evidence for Na, K short range order and implications for twofeldspar thermometry. American Mineralogist, 68, 398–413.

HEILBRON, M. 1985. O metamorfismo da área entre Itutinga e Madre de Deus de Minas – MG. Simp. Geol. Minas Gerais, 3, Belo Horizonte, MG, Anais... SBG, Núcleo de Minas Gerais, Belo Horizonte, MG, Bol 5: 219-234.

HEILBRON, M. 1993. Evolução tectôno-metamórfica da seção Bom Jardim de Minas-MG - Barra do Piraí-RJ, setor central da Faixa Ribeira. *Tese de Doutoramento*, IG/USP. 268p.

HEILBRON, M. 1995. O Segmento Central da Faixa Ribeira: Síntese Geológica e Ensaio de Evolução Geotectônica. *Tese de Livre Docência*, UERJ. 115p.

HEILBRON, M.; TUPINAMBÁ, M.; ALMEIDA, J.C.H.; VALERIANO, C.M.; VALLADARES, C.S. & DUARTE, B. P. 1998. New constraints on the tectonic organization and structural styles related to the Brasiliano collage of the Central Segment of Ribeira Belt, SE Brazil. 14th International Conference on basement tectonics. Ouro Preto, MG, Brazil. Abstracts. P. 15-17.

HEILBRON, M.; VALERIANO, C.M.; TUPINAMBÁ, M.; ALMEIDA, J.; VALLADARES, C.; HEILBRON, M.; MOHIAK, W.; MILANI, E.; 2000. From Collision to Extension: The Roots of the South-eastern Continental Margin of Brazil. In:, Geology & Geophysics of Continental Margin. AGU Geophysical Monograph. Eds: W U Mohriak and M. Talwani Special Number of International Geophysical Association

HEILBRON, M.; MACHADO, N. & DUARTE, B.P. 2001. Evolution of the Paleoproterozoic Transamazonian Orogen in SE Brazil: a View from the Neoproterozoic Ribeira Belt. In: Geological Association of Canada/Mineralogical Association of Canada Joint Annual Meeting, St. Johns, Newfoundland, Canada, May, 2001. *Abstracts*, vol. 26, p. 61.

HEILBRON, M. & MACHADO, N. 2003. Timing of terrane accretion in the Neoproterozoic-Eopaleozoic Ribeira orogen (SE Brazil). *Precambrian Research*, 125:87-112.

HEILBRON, M., MACHADO, N., SIMONRTTI, T., DUARTE, B., 2003b. A paleoproterozoic orogen reworked within the Neoproterozoic Ribeira Belt, SE Brazil. In: South American Symposioum on Isotopic Geology, 4, short papers, p. 186-189.

HEILBRON, M.; PEDROSA-SOARES, A.C.; CAMPOS NETO, M.C.; SILVA, L.C.; TROUW, R.A.J.; JANSI, V.A. 2004a. Província Mantiqueira. *In*: Mantesso-Neto. V.; Bartorelli, A.; Carneiro, C.D.R.; Brito Neves. B.B. (orgs). 2004. Geologia do Continente Sul-Americano: Evolução da obra de Fernando Flávio Marques de Almeida. Beca, São Paulo, 647p.

HEILBRON, M., PEDROSA-SOARES, A.C., CAMPOS NETO, M., SILVA, L.C., TROW, R.A.J., JANASI, V.C., 2004b. Brasiliano Belts in SE Brazil. Journal of virtual explorer, Volume 17, www.virtualexplorer.au

HELBOLD, R; VALENÇA, J.G. & LEONARDOS Jr., O.H. 1965. Mapa Geológico do Estado da Guanabara, escala I :50.000. Rio de Janeiro, DNPM/MME.

HISCHBERG, A & WINKLER, H.G. F. 1968. Contri. Mineral. Petrol. 18:17-42.

HODGES, K. V. & ROYDEN, R. L. 1984. Geologic thermobarometry of retrograded metamorphic rocks: an indication of the uplift trajectory of a portion of the northern Norwegian Caledonides. Journal of Geophysical Research, 89, 7077–7090.

HODGES, K. V. & SPEAR, F. S. 1982. Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67, 1118–1134.

HOINKES, G. 1986. Effect of grossular-content on the partitioning of Fe and Mg between garnet and biotite. Contributions to Mineralogy and Petrology, 92, 393–399.

HOLDAWAY . 1971. Stability of andalusite and the aluminium silicate phase diagram. American Journal of science, 271, 97.131.

HOLLAND, T. J. B. 1980. The reaction albite=jadeite+quartz determined experimentally in the range 600–1200°C. American Mineralogist, 65, 129–134

HOWELL D.G. 1989. Tectonic of suspect terranes: Mountain building and continental growth, chapman Hall (eds), Londres., 232p.

HOLLAND, Y.t & BLUND, J. 1994. Non-Ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Miner. Petrol., 116;433-447.

INDARES, A. & MARTIGNOLE, J. 1985a. Biotite-garnet geothermometry in the granulite facies: the influence of AI and Ti in biotite. American Mineralogist, 70, 272–278.

INDARES, A. & MARTIGNOLE, J. 1985b. Biotite-garnet geothermometry in granulite facies rocks: evaluation of equilibrium criteria. Canadian Mineralogist, 23, 187–193

JOHANNES, W., BELL, P. M. MAO, M. K. BOETTCHER, A. L. CHIPMAN, D. W. HAYS, J. F. NEWTON, R. C. & SEIFERT, F. 1971. An interlaboratory comparison of piston-cylinder pressure calibration using the albite breakdown reaction. Contributions to Mineralogy and Petrology, 32, 24–38.

KOHN, M. J. and SPEAR, F. S. (1989): Empirical calibration of geobarometers for the assemblage garnet+hornblende+plagioclase+quartz. Am. Mineral., 74, 77-84

KOHN, M. J. & SPEAR, F. S. (1990): Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. Am. Mineral., 75, 89-96.

KOZIOL, A. M. & NEWTON, R. C. 1988a. Redetermination of the garnet breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz geobarometer. American Mineralogist, 73, 216–223.

KÜHN, A.; STÜWE, K.; TROUW, R.A.J. 2004. Metamorphic Evolution of the Ribeira Belt: Evidence from Outcrops In the Rio de Janeiro Area, Brazil. Journal pf Petrology. 45(11): 2303 – 2323.

LAIRD, H & ALBEE. 1981. Pressure-temperature and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. Amer. Jour.Sci. 281:127-175.

LAMEYERE, J & BOWDEN, P. 1982. Plutonic rock types series: discrimination of various granitoid series and related rocks. *Journal of Volcanology and Geothermal Research*, 14: 169-180.

LANG, H. M. & RICE, J. M. 1985b. Geothermometry, geobarometry and T-X (Fe-Mg) relations in metapelites, Snow Peak, northern Idaho. Journal of Petrology, 26, 889–924.

LEE, H. Y., & GANGULY, J.. 1988, Equilibrium compositions of co-existing garnet and orthopyroxene: experimental determinations in the system FeO-MgO-Al₂O₃,-SiO₂, and applications: Jour. Petrology, v. 29, n^o. 1, p. 933114.

LIOU, J. G., MARUYAMA, S. & CHO, M. 1987. Very low-grade metamorphism of volcanic and volcaniclastic rocks - mineral assemblages and mineral facies. In: Frey, M. (ed.) Low Temperature Metamorphism, Blackie, Glasgow, 59–114.

MACHADO, N.; VALLADRES, C.S; HEILBRON, M. & VALERIANO, C. 1996. U-Pb geochronology of the central Ribeira Belt (Brazil) and implications for the evolution of the Brazilian Orogeny. *Precambrian Research*, 79: 347-361.

MACHADO FILHO, L., RIBEIRO, M.W., GONZALEZ S.R., SCHEMINI, C.A., SANTOS NETO, A.S., PALMEIRA, R.C.B., PIRES, I.L., TEIXIERA, W., CASTRO, H.F. 1983. Folhas SF 23/24 Rio de Janeiro e Vitória. Geologia. RADAMBRASIL, vol 32.

MERRIL, R.B.; ROBERTSON, J.K.; WYLLIE, P.J. 1970. J.Geol. 78:558-559.

MATOS G.M.M., FERRARI, P.G., CAVALCANTE, J.C. 1980 Projeto Faixa Calcária Cordeiro-Cantagalo – RJ. Mineração e Metalurgia, 39: 26-29.

MIASHYRO, A. 1973 - Metamorphism and metamorphic belts. Allen and Unwin. London. 317p.

MOECHER, D. P., ESSENE, E. J., & ANOVITZ, L. M., 1988, Calculation and application of clinopyroxene-garnet-plagioclase-quartz geobarometers: Contrib. Miner. Petrol., v. 160, n^o. p. 92-106.

NEWTON, R. C. 1983. Geobarometry of high-grade metamorphic rocks. American Journal of Science, 283-A, 1–28

NEWTON, R. C. & HASELTON, H. T. 1981. Thermodynamics of the garnetplagioclase-Al2SiO5-quartz geobarometer. In: Newton, R. C., Navrotsky, A. & Wood, B. J. (eds) Thermodynamics of Minerals and Melts, Springer-Verlag, New York, 129– 145.

NEWTON, R. C. & PERKINS, D. III. 1982. Thermodynamic calibration of geobarometers based on the assemblage garnet-plagioclase-orthopyroxeneclinopyroxene-quartz. American Mineralogist, 67, 203–222.

NOGUEIRA, J.R, 1999. Evolução geológica dos terrenos de alto grau metamórfico da Faixa Ribeira na Região de Juiz de Fora, Minas Gerais. Campinas, IG. Unicamp, Tese Dout., 190p.

NOGUEIRA J.R. & CHOUDHURI, A. 2000. Geotectonic models and geologic evolution of the high-grade gneiss terranes of Juiz de Fora (MG), Brazil. *Rev. Bras. Geoc.*, 30: 120-125.

PACIULLO, F.V.P., RIBEIRO, A.; ANDREIS, R.R.; TROUW, R.A.J. 2000. The Andrelândia Basin, a Neoproterozoic intra-plate continental margin, southern Brasília Belt. *Rev. Bras. Geoc.;* 30: 169-173.

PARIA, P., BHATTACHARYA, A. & SEN, A. 1988. The reaction garnet + clinopyroxene + quartz = 2 orthopyroxene + anorthite: a potential geobarometer for granulites. Contributions to Mineralogy and Petrology, 99, 126–133.

PEDROSA-SOARES, A.C., NOCE, C.M., VIDAL, P. MONTEIRO, R.L.B.P., LEONARDOS, O. H, 1992. Toward a new tectonic model for the Late Proterozoic Araçuaí (SE Brazil) – West Congolian (SW Africa) belt. J. SouthAm. Earth Sci. 6, 33-47.

PEDROSA-SOARES, A.C., VIDAL Ph., LEONARDOS, O.H., BRITO-NEVES, B.B. 1998. Neoproterozoic Oceanic Remmants in Eastern Brazil: Further Evidence and Refutation of na Exclusively Ensialic Evolution for the Araçuaí-West Congo Belt. Geology. 26:519-522.

PEDROSA-SOARES, A.C., WIEDEMANN, C.M., FERNANDES, M.L.S., FARIA, L.F., FERREIRA, J.C.H., 1999. Geotectonic significance of the neoproterozoic granitic magmatism in the araçuaí Belt, Eaastern Brazil: a model and pertinent questions. Revista Brasileira de Geociências 29, 59 – 66.

PERCHUK, L. L. & LAVRENT'EVA, I. V. 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena, S. K. (ed.) Kinetics and Equilibrium in Mineral Reactions, Advances in Physical Geochemistry, 3, Springer-Verlag, New York, 199–239.

PERKINS, D., III & CHIPERA, S. J. 1985. Garnet-orthopyroxene-plagioclase-quartz barometry: refinement and application to the English River subprovince and the Minnesota River Valley. Contributions to Mineralogy and Petrology, 89, 69–80.

PERKINS, D., III & NEWTON, R. C. 1981a. Charnockite geobarometers based on coexisting garnet-pyroxene-plagioclase-quartz. Nature, 292, 144–146.

POWELL, R., & HOLLAND. T., 1990, An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system $K_2O-Al_2O_3$ -TiO₂-SiO₂-C-H₂-O₂: Jour. Metamorphic Geology, v. 8. n^o. I, p. 89-127.

POWELL, R., & HOLLAND, T., 1994, Optimal geothermometry and geobarometry: Am. Mineralogist, v. 79, n°. I-2. p. 120-133.

POWELL, M., & POWELL, R., 1977. Plagioclase- alkali feldspar geothermometry revisited: Mineral. Mag., v. 41, n°. 318, p. 253-256.

RAMSAY, J.G. 1967. Folding and fracturing of rocks. McGaw-Hill Book, Co. New York, 568pp.

RECHE, J. & MARTINEZ, F.J. 1966. *GPT*: An Excel spreadsheet for thermobarometric calculations in metapelitic rocks. Computers & Geosciences Vol. 22, No. 7, pp. 775-184.

REGO, I.T.S.F, 1989. Petrologia e Geoquímica da unidade charnockítica Bela Joana, Região de São Fidélis, RJ. Tese de Doutorado, Instituto de Geociências, Universidade de São Paulo, 248pp.

REIS, A.P., MANSUR, K.L., 1995. Sinopse Geológica do estado do Rio de Janeiro. Mapa Geológico 1:400.000. Niterói. DRM/RJ, 60pp.

RIBEIRO, A.; ANDREIS.; R.R.; TROW. R.A.J..; PACIULLO, F.V.P. & VALENÇA, J.G. 1995. Evolução das bacias proterozóicas e o termotectonismo brasiliano na margem sul do Cráton São Francisco. *Rev. Bras. Geoc.* 25(4) 235-248.

RIETMEIJER, F.J.M. 1983. Chemical distinction between igneous and metamorphic ortopyroxenes especially those coexisting with ca-rich clinopyroxenes: a re-valuation. Mineralogical Magazine. 47:143-151.

RINGWOOD .1975. Composition and Petrology of the Eart's Mantle. Mcgraw Hill, New York.

ROSIER, G. F. 1965. Pesquisas geológicas na parte oriental do Estado do Rio de Janeiro e na parte vizinha do Estado de Minas Gerais. *Boi. Div. Geol Min., DNPM,* Rio de Janeiro, 222p.

SANTOS, T., MUNHÁ, J., TASSINARI, C., NETO, C. & FONSECA, P. 2006 -Petrologia, geoquímica e geocronologia de granulitos no sector de São Fidelis -Santo António de Pádua, RJ, SE Brasil. VII Congresso Nacional de Geologia (Estremoz), Livro de Resumos, 1: 241-244.

SCHMMIT, R.S.; TROUW, R.A.J.; & VAN SCHMUS, W.R. 1999. The characterization of a Cambrian (~ 520 Ma) tectonometamorphic event in the Costeiro Domain of the Ribeira belt, using U/Pb in syntectonic veins. *In*: South-American Symposium on Isotope Geology, 2, Córdoba, Argentina, *Actas...* Anales XXXIV, SEGEMAR (Servicio Geológico Minero Argentino), p. 363-366.

SCHMMIT, R.S. 2001. A Orogênia Búzios: um evento tectono-metamórfico Cambro-Ordoviciano caracterizado no Domínio Tectônico de Cabo Frio, Faixa Ribeira-Sudeste do Brasil. *Tese de Doutoramento*, IG/UFRJ, 273p.

SEN, S. & BHATTACHARYA, A. 1984. An orthopyroxene-garnet thermometer and its application to the Madras charnockites. Contributions to Mineralogy and Petrology, 88, 64–71.

SIIVOLA, J. & SCHMID, R. 2007. *List of minerals abreviations*: Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Disponível em: www.bgs.ac.uk/scmr/home.html.

SILVA, W.G.; BATISTA, J.J.; THOMPSON, R. 1978. Texto explicativo da Folha Geológica Cambuci. Niterói, DRM/RJ.

SILVA, L.C., & CUNHA, H.C.S. (org.) 2001. Geologia do Estado do Rio de Janeiro: texto explicativo do Mapa Geológico do Estado do Rio de Janeiro. Brasília, CPRM, CD-ROM.

SILVA, L.C., ARMSTRONG, R., NOCE, C.M., PIMENTEL, M.M., PEDROSA-SOARES, A.C., LEITE, C., VIEIRA, V.S., PAES, V.C., 2002. Reavaliação U-PB SHIRIMP em terrenos pré-cambrianos brasileiros. Parte II: Orógeno Araçuaí, Cinturão Mineiro e Cráton São Francisco Meridional. Ver. Brás. Geoc., 32: 513-528.

SILVA, L.C., MCNAUGHTON, N.J., ARMSTRONG, R., HARTMANN, L.A., FLETCHER, I. 2005. The Neoproterozoic Mantiqueira Province and its African connections: a zircon-based U-PB geochronology subdivision for the Brasiliano/Pan-Africano systems of orogens. Precrambrian Res., 136: 203-240.

SÖLLNER, F.; TROUW, R.A.J. 1997. The Andrelândia depositional cycle (Minas Gerais, Brazil), a post-transamazonic sequence south of the São Francisco Craton: evidence from U-PB dating on zircons of a metassediment. J.S. *Am.earth Sci.*, 10: 21-28.

SOTO, J.I. & SOTO, V.M. 1995. References for the "PTMAFIC" computer program. Instituto Andaluz de ciencias de la Tierra. C.S.I.C.-Granada University - Campus Fuentenueva-Granada (SPAIN).

Spear, F. S. 1989. Petrologic determination of metamorphic pressure-temperaturetime paths. In Spear, F. & Peacock, S.M. 1989. *Metamorphic pressure-temperaturetime paths. Short Course in Geology*. Vol. 7. 28th International Geology Congress. Washington, DC. 1-55.

Spear, F. S. 1993. *Metamorphic phase equilibria and pressure-temperature-time paths*. Mineralogical Society of America Monograph. Chelsea, Michigan. 799p.

STORMER. J. C., 1975. A practical two-feldspar geothermometer: Am. Mineralogist, v. 60, n^o. 7-8, p.kh7-674.

SPENCER, K. J. & LINDSLEY, D. H. 1981. A solution model for coexisting irontitanium oxides. American Mineralogist, 66, 1189–1201.

THOMPSON, A. B. 1976b. Mineral reactions in pelitic rocks. II. Calculation of some P-T-X (Fe-Mg) phase relations. American Journal of Science, 276, 425–454.

TROUW, R.A.J., RIBEIRO, A & PACIULLO, F.V.P. 1986. Contribuição à geologia da folha Barbacena 1:250.000. In: Congresso Brasileiro Geologia, 34, Goiânia, Anais..., Goiânia, SBG, V.2:972-986.

TROUW, R.A.J. 1992. Evolução tectônica ao sul do Cráton São Francisco, baseada em análise metamórfica. *In*: Congresso Brasileiro de Geologia, 38, São Paulo, Bol. De Resumos Expandidos... São Paulo, SBG: 1: 327-328.

TROUW, R.A.J.; HEILBRON, M.; RIBEIRO, A.; PACIULLO, F.V.P.; VALERIANO, C.M.; ALMEIDA, J.C.H.; TUPINAMBÁ, M.; ANDREIS, R.R.; 2000. The central segment of the Ribeira Belt. *In*; U.G. Cordani, E.J. Milani, A. Thomaz Filho (eds.) *Tectonic Evolution of South America*. Rio de Janeiro, p. 287-310.

TUPINAMBÁ, M. 1993a. Litoestratigrafia, estruturas e metamorfismo do précambriano entre Itaperuna e Italva. Dissertação de Mestrado, Instituto de Geociências, Universidade Federal do Rio de Janeiro, 146p.

TUPINAMBÁ, M. 1993b. Rochas intrusivas e metassedimentos granulíticos do Complexo Paraíba do Sul na parte setentrional da Faixa Ribeira. *In*: SBG, Simp. Geol. Sudeste, 3, Atas, p. 47-49.

TUPINAMBÁ, M. 1999. Evolução tectônica e magmática da Faixa Ribeira na Região Serrana do Estado do Rio de Janeiro. Tese de Doutoramento, Instituto de Geociências, Universidade de São Paulo, 221p. TUPINAMBÁ, M.; HEILBRON, M.; OLIVEIRA, A.; PEREIRA, A.J.; CUNHA, E.R.S.P.; FERNANDES, G.A.; FERREIRA, J.; CASTILHO, G.; TEIXEIRA, W. 1996. Complexo Rio Negro – uma unidade estratigráfica relevante no entendimento da Faixa Ribeira. *In*: SBG, Congr. Bras. Geol., 39, *Anais*, vol.6, p. 104-106.

TUPINAMBÁ, M.; TEIXEIRA, W.; HEILBRON, M. & BASEI, M. 1998. The Pan-African/Brasiliano arc-related magmatism at the Costeiro Domain of the Ribeira Belt, southeastern Brazil: new geochronological and lithogeochemical data. 14th International Conference on basement tectonics. Ouro Preto, MG. Abstracts. p. 12-14.

TUPINAMBÁ, M.; DUARTE, B.P.; EIRADO, L.G.; NOGUEIRA, J.R.; HEILBRON, M.; ALMEIDA, C.G.2003a. Geologia da Folhas Leopoldina e Pirapetininga. *In*: A.C. Pedrosa Soares. C.M. Noce, R. Trouw, M. Heilbron (coord.). Projeto Sul de Minas, Belo Horizonte, COMIG/SEME, v.2,p.320-404.

TUPINAMBÁ, M.; DUARTE, B.P.; EIRADO, L.G.; NOGUEIRA, J.R.; HEILBRON, M.; GUIA, C.2003b. Geologia da região entre Leopoldina e Além Paraíba, MG. *In*: SBG-MG, Simp. Geol. M.G., 12, *Anais*, p. 105.

TUPINAMBÁ, M.; PENHA, H.M.; JUNHO, M.C.B.; 2003c. Arc related to postcollisional magmatism at Serra dos Órgãos region, Rio de Janeiro State, Brazil: products of Gondwana assembly, during the Brasiliano-Pan African Orogeny. *In*: IUGS, Field trips/ International Geological Congress, 31, CD-ROM.

TUPINAMBÁ, M.; TEIXEIRA, W.; HEILBRON, M. 2000. Neoproterozoic Western Gondwana assembly and subduction-related plutonism: the role of the Rio negro Complex in the Ribeira belt, South-eastern Brazil. *Rev. Bras. Geoc.*, 30: 7-11.

TUPINAMBÁ, M.; HEILBRON, M.; DUARTE, B.P.; NOGUEIRA, J.R.; VALLADARES, C.S.; ALMEIDA, J.C.H; EIRADO, L.G.; MEDEIROS. S.R.; ALMEIDA, C.G.; MIRANDA, A.; RAGATKY, C.D.; MENDES, J.; LUDKA, I. 2007. Geologia da Faixa Ribeira setentrional: Estado da Arte e Conexões com a Faixa Araçuaí. *In*: Rev. Geonomos 15 (1): 67-79.

TURNER, F.J.1981. Metamorphic Petrology: Mineralogical, Field, and Tectonic Aspects. In: , McGraw-Hill, New York, p. 524.

TUTTLE, O.F & BOWEN, N.L. Geol. Soc. Am. Memoir No 74.

WENK, W & KELLER, F. 1969. Schweiz. Mineral. Petrog. Mitt. 49: 157-198.

WILLIANS, M. L., & GRAMBLING, J. A., 1990, Manganese, ferric iron and the equilibrium between garnet and biotite: Am. Mineralogist, v. 75, no. 7-8, p. 886-908.

WINKLER, H.G.F. 1976. Petrogenesis of metamorphic rocks. 4 ed. New York, Springer – Verlag. 348p.

WOOD, B. J. & BANNO, S. (1973): Garnet-orthopyroxene and orthopyroxeneclinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol., 42, 109-124.

Amostra	IV-X-19	IV-X-19	IV-X-19	
Grão	1	1	2	
Posicão	núcleo	nícleo	núcleo	
Mineral	Rutilo	Rutilo	Rutilo	
SiO2	0,003	0,006	1,129	
TiO2	97,108	99,384	91,286	
AI2O3	0,047	0,054	0,278	
Cr2O3	0,000	0,103	0,200	
FeO	0,550	0,711	4,593	
MnO	0,000	0,066	0,009	
MgO	0,000	0,006	0,000	
CaO	0,013	0,004	0,294	
Total	97,940	100,578	98,043	
Si	0	0,000	0,016	
Ti	0,995	0,994	0,951	
AI	0,001	0,001	0,005	
Cr	0	0,001	0,002	
Fe	0,006	0,008	0,053	
Mn	0	0,001	0	
Mg	0	0,000	0	
Са	0	0,000	0,004	

Resultados das análises de química mineral em cristais de rutilo em metapelito (IV-X-19).

Resultados das análises de química mineral em cristais de magnetita em metabasitos

amostra	JI-XI-15B	JI-XI-15B	JI-XI-15B	JI-XI-15B	
Grão	1	2	3	4	
localização	núcleo	núcleo	núcleo	núcleo	
mineral	magnetita	magnetita	magnetita	magnetita	
SiO2	0,016	0,013	0,022	0,030	
TiO2	0,068	0,023	0,016	0,000	
Al2O3	0,345	0,339	0,286	0,236	
Cr2O3	0,397	0,393	0,338	0,479	
FeO	91,499	1,499 91,421 9		91,035	
MnO	0,000	0,059	0,000	0,029	
MgO	0,015	0,003	0,019	0,000	
CaO	0,012	0,000	0,059	0,058	
Total	92,452	92,350	93,086	92,039	
Si	0,005	0,004	0,007	0,009	
Ti	0,016	0,005	0,004	0	
AI	0,126	0,124	0,104	0,087	
Cr	0,097	0,097	0,082	0,118	
Fe(iii)	15,735	15,76	16	16	
Fe(ii)	8,01	7,992	7,982	8	
Mn	0	0,016	0	0	
Mg	0	0,001	0,009	0	
Са	0	0	0,02	0	

Amostra	IV-X-19								
Grão	1	1	2	2	2	2	3	3	3
mineral	espinélio								
SiO2	0,017	0,011	0,018	0,020	0,035	0,005	0,018	0,006	0,010
TiO2	0,070	0,000	0,052	0,032	0,000	0,000	0,011	0,016	0,013
AI2O3	56,201	56,035	51,666	58,231	58,344	58,681	58,953	58,629	58,419
Cr2O3	2,699	2,695	0,572	0,580	0,619	0,546	0,655	0,576	0,607
FeO	11,516	13,289	37,161	30,334	31,207	30,999	26,132	27,603	26,986
MnO	0,031	0,000	0,062	0,096	0,090	0,063	0,051	0,082	0,053
ZnO	20,711	19,333	3,749	3,629	3,609	3,702	6,568	6,886	7,084
MgO	3,500	3,519	5,766	6,128	5,757	5,832	5,776	4,944	4,732
CaO	0,006	0,000	0,025	0,016	0,000	0,011	0,009	0,000	0,044
Total	96,338	94,957	99,410	99,328	99,948	100,145	98,486	98,960	98,255
Si	0,004	0,003	0,004	0,005	0,008	0,001	0,004	0,001	0,002
Ti	0,013	0	0,009	0,005	0	0	0,002	0,003	0,002
Al	16,121	16,04	14,063	15,479	15,466	15,511	15,822	15,767	15,844
Cr	0,519	0,518	0,104	0,103	0,11	0,097	0,118	0,104	0,11
Fe(iii)	0	0	1,806	0,398	0,409	0,39	0,048	0,121	0,037
Fe(ii)	2,344	2,699	5,37	5,323	5,461	5,423	4,929	5,146	5,156
Mn	0,006	0	0,012	0,018	0,017	0,012	0,01	0,016	0,01
Zn	3,722	3,467	0,639	0,604	0,599	0,613	1,104	1,16	1,204
Mg	1,27	1,274	1,985	2,061	1,93	1,95	1,961	1,682	1,623
Са	0,002	0	0,006	0,004	0	0,003	0,002	0	0,011

Resultados das análises de química mineral em cristais de espinélio em metapelito (IV-X-19).

	JI-07-II-	JI-07-II-	JI-XI-	JI-XI-											
Amostra	36B	36B	15B	15B	IV-X-19										
Grão	1	1	1	1	1	1	2	2	2	3	3	4	4	5	5
mineral	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita	ilmenita
SiO2	0,022	0,015	0,011	0,001	0,049	0,021	0,027	0,038	0,000	0,145	0,001	0,000	0,020	0,013	0,028
TiO2	53,066	53,247	50,705	51,556	48,461	44,278	50,097	49,717	51,698	48,955	48,410	50,647	48,899	44,018	50,959
AI2O3	0,034	0,022	0,030	0,029	0,030	0,018	0,021	0,028	0,023	0,109	0,015	0,033	0,024	0,036	0,010
Cr2O3	0,087	0,019	0,067	0,012	0,075	0,188	0,000	0,073	0,052	0,109	0,027	0,034	0,059	0,150	0,116
FeO	47,493	47,549	50,404	48,800	49,608	52,326	47,659	47,000	46,549	48,925	48,344	45,944	48,590	52,237	46,444
MnO	0,353	0,336	0,305	0,438	0,118	0,167	0,155	0,131	0,194	0,123	0,164	0,144	0,136	0,079	0,127
MgO	0,882	0,949	0,913	1,055	0,86	0,773	1,230	1,200	0,471	0,259	0,653	1,321	1,263	0,824	0,916
CaO	0,000	0,010	0,026	0,005	0,020	0,000	0,005	0,013	0,014	0,070	0,008	0,026	0,016	0,033	0,014
Total	101,983	102,157	102,480	101,934	99,425	97,877	99,397	98,356	99,091	99,331	97,751	98,183	99,158	97,514	98,779
Si	0,001	0,001	0,001	0	0,002	0,001	0,001	0,002	0	0,008	0	0	0,001	0,001	0,001
Ti	1,973	1,975	1,904	1,933	1,913	1,786	1,929	1,932	1,983	1,914	1,909	1,956	1,876	1,782	1,963
AI	0,002	0,001	0,002	0,002	0,002	0,001	0,001	0,002	0,001	0,007	0,001	0,002	0,001	0,002	0,001
Cr	0,003	0,001	0,003	0	0,003	0,008	0	0,003	0,002	0,004	0,001	0,001	0,002	0,006	0,005
Fe	1,963	1,96	2,104	2,034	2,096	2,346	2,04	2,03	1,985	2,126	2,12	1,973	2,072	2,351	1,989
Mn	0,015	0,014	0,013	0,018	0,005	0,008	0,007	0,006	0,008	0,005	0,007	0,006	0,006	0,004	0,006
Mg	0,065	0,07	0,068	0,078	0,065	0,062	0,094	0,092	0,036	0,02	0,051	0,101	0,096	0,066	0,07
Са	0	0	0,001	0	0,001	0	0	0,001	0,001	0,004	0	0,001	0,069	0,002	0,001

Resultados das análises de química mineral em cristais de ilmenita em metabasitos (JI-II-07-36B; JI-XI-15B) e em metapelito (IV-X-19)

	JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-
Amostra	36B	36B	36B	36B	36B	36B	7B	7B	7B	7B	7B	7B	7B	7B
Grão	1	1	1	1	2	2	1	1	1	1	2	2	2	2
Posição	c1-n1	c1-n2	c1-b1	c1-b2	c2-n1	c2-b1	c1-n1	c1-n2	c1-b1	c1-b2	c2-b1	c2-b2	c2-n1	c2-n2
Mineral	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI
SiO2	48,982	49,582	47,524	47,678	49,474	48,618	59,037	59,513	58,563	57,198	59,079	59,118	58,874	59,046
TiO	0,038	0,000	0,014	0,000	0,011	0,010	0,000	0,020	0,020	0,003	0,000	0,022	0,000	0,000
AI2O3	31,926	31,892	32,710	32,502	32,270	32,484	25,162	25,307	25,641	27,060	26,301	26,386	25,274	25,435
FeO	0,095	0,162	0,592	0,263	0,045	0,160	0,123	0,078	0,155	0,120	0,238	0,246	0,113	0,08
BaO	0,008	0,059	0,000	0,000	0,005	0,026	0,000	0,008	0,035	0,095	0,000	0,000	0,02	0,042
SrO	0,082	0,048	0,050	0,033	0,000	0,062	0,083	0,122	0,048	0,016	0,074	0,060	0,050	0,022
CaO	15,483	15,089	16,293	16,094	15,387	15,890	7,576	7,491	7,717	8,884	7,945	8,093	7,514	7,341
Na2O	2,543	2,774	2,076	2,242	2,343	2,127	6,221	6,256	6,222	5,731	6,269	6,190	6,379	6,398
K2O	0,081	0,124	0,066	0,073	0,079	0,068	0,406	0,394	0,169	0,172	0,066	0,213	0,301	0,334
total	99,238	99,682	99,275	98,852	99,614	99,383	98,680	99,195	98,586	99,289	100,036	100,406	98,561	98,752
Si	9,027	9,084	8,795	8,844	9,053	8,943	10,661	10,681	10,582	10,307	10,527	10,507	10,642	10,645
Ti	0,005	0,000	0,002	0,000	0,002	0,001	0,000	0,003	0,003	0,000	0,000	0,003	0,000	0,000
Al	6,936	6,889	7,137	7,107	6,962	7,044	5,351	5,349	5,456	5,742	5,519	5,523	5,38	5,4
Fe	0,015	0,025	0,092	0,041	0,007	0,025	0,019	0,012	0,023	0,018	0,035	0,037	0,017	0,012
Ва	0,001	0,004	0,000	0,000	0,000	0,002	0,000	0,001	0,002	0,007	0,000	0,000	0,001	0,003
SrO	0,001	0,004	0,000	0,000	0,000	0,002	0,001	0,004	0,000	0,000	0,001	0,001	0,000	0,000
Са	3,057	2,962	3,231	3,199	3,017	3,132	1,466	1,441	1,494	1,715	1,517	1,541	1,455	1,418
Na	0,909	0,985	0,745	0,806	0,831	0,759	2,178	2,177	2,18	2,002	2,166	2,133	2,236	2,237
К	0,019	0,029	0,016	0,017	0,018	0,016	0,094	0,09	0,039	0,04	0,015	0,048	0,069	0,077

Resultados das análises de química mineral em cristais de plagioclásio em metabasitos (JI-II-07-36B; JI-XI-15B e IV-RM-10A), em metapelito (IV-RM-5A) e em ortognaisse (IV-RM-7B).

	IV-RM-		IV-RM-	IV-RM-	IV-RM-	IV-RM-								
Amostra	10A	IV-RM-10A	10A	10A	10A	10A								
Grão	1	1	2	2	2	4	4	4	4	4	5	5	5	5
Posição	c1-b2	c1-b2	c1-n1	c1-n2	c1-n3	c3-b1	c3-b2	c3-n1	c3-n2	c3-n3	c2-n-1	c2-b1	c2-n1	c2-b1
Mineral	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI
SiO2	60,461	61,052	61,851	60,875	62,312	60,902	60,583	61,491	61,215	60,810	59,969	59,473	60,564	58,596
TiO2	0,002	0,024	0,008	0,000	0,032	0,000	0,011	0,017	0,035	0,000	0,026	0,042	0,016	0,000
AI2O3	25,680	25,809	25,934	25,728	25,240	25,626	25,720	25,692	25,685	25,438	25,434	25,339	26,274	25,181
FeO	0,184	0,111	0,115	0,069	0,104	0,096	0,067	0,048	0,090	0,053	0,121	0,163	0,048	0,036
BaO	0,048	0,009	0,000	0,053	0,000	0,050	0,043	0,048	0,009	0,000	0,000	0,000	0,019	0,071
SrO	0,118	0,066	0,086	0,170	0,150	0,161	0,094	0,051	0,064	0,103	0,129	0,172	0,074	0,038
CaO	7,192	7,263	7,297	7,314	6,582	7,092	7,186	7,231	7,360	7,215	7,643	7,434	7,628	7,568
Na2O	6,684	6,729	6,556	6,665	6,602	6,535	6,615	6,683	6,586	6,438	6,500	6,618	6,290	6,611
K2O	0,234	0,235	0,239	0,259	0,309	0,260	0,248	0,320	0,279	0,360	0,286	0,255	0,199	0,306
Total	100,633	101,344	102,105	101,198	101,374	100,732	100,599	101,651	101,381	100,434	100,112	99,523	101,156	98,489
Si	10,693	10,71	10,753	10,707	10,886	10,742	10,706	10,751	10,732	10,755	10,673	10,654	10,641	10,618
Ti	0,000	0,003	0,001	0,000	0,004	0,000	0,001	0,002	0,005	0,000	0,003	0,006	0,002	0,000
AI	5,348	5,332	5,31	5,329	5,193	5,323	5,352	5,29	5,303	5,298	5,331	5,346	5,436	5,374
Fe2	0,027	0,016	0,017	0,01	0,015	0,014	0,01	0,007	0,013	0,008	0,018	0,024	0,007	0,005
Ва	0,003	0,001	0,000	0,004	0,000	0,003	0,003	0,003	0,001	0,000	0,000	0,000	0,001	0,005
Са	1,363	1,365	1,359	1,378	1,232	1,34	1,361	1,355	1,383	1,367	1,457	1,427	1,436	1,469
Na	2,292	2,289	2,21	2,273	2,236	2,235	2,267	2,266	2,239	2,208	2,243	2,299	2,143	2,323
К	0,053	0,053	0,053	0,058	0,069	0,059	0,056	0,071	0,062	0,081	0,065	0,058	0,045	0,071

	JI-XI-													
Amostra	15B	JI-XI-15B												
Grão	1	1	1	1	2	2	2	2	3	3	3	4	4	4
Posição	c1-n1	c1-n2	c1-b1	c1-b2	c2-n1	c2-n2	c2-b1	c2-b2	c4-1-n1	c4-1-n2	c4-1-b1	c4-2-n1	c4-2-n2	c4-2-b1
Mineral	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI
SiO2	56,865	56,622	56,801	57,015	55,459	56,100	54,875	55,139	54,756	56,811	55,382	57,196	56,799	55,443
TiO2	0,026	0,014	0,017	0,000	0,023	0,045	0,011	0,014	0,000	0,020	0,044	0,000	0,006	0,000
AI2O3	28,009	27,928	28,366	28,400	27,777	28,030	27,623	28,014	29,363	27,680	27,764	27,721	27,923	27,761
FeO	0,165	0,199	0,311	0,245	0,141	0,151	0,196	0,249	0,287	0,132	0,235	0,148	0,172	0,092
BaO	0,000	0,061	0,048	0,081	0,011	0,058	0,056	0,037	0,000	0,000	0,020	0,012	0,013	0,000
SrO	0,038	0,056	0,061	0,130	0,060	0,091	0,061	0,071	0,088	0,166	0,052	0,029	0,102	0,018
CaO	9,894	9,860	10,305	10,231	10,269	10,393	10,458	10,315	9,180	9,729	10,352	9,748	9,969	10,191
Na2O	5,125	5,016	5,054	5,028	5,059	4,906	5,034	4,957	5,126	5,170	5,070	5,287	5,040	5,041
K2O	0,294	0,274	0,245	0,289	0,321	0,308	0,294	0,273	0,581	0,337	0,329	0,325	0,330	0,331
Total	100,445	100,046	101,258	101,449	99,120	100,128	98,706	99,119	99,436	100,053	99,272	100,506	100,357	98,909
Si	10,152	10,151	10,084	10,101	10,064	10,076	10,023	10,015	9,900	10,186	10,047	10,203	10,156	10,074
Al	5,889	5,896	5,931	5,925	5,936	5,929	5,942	5,992	6,252	5,845	5,931	5,824	5,880	5,940
Fe2	0,025	0,030	0,046	0,036	0,021	0,023	0,030	0,038	0,043	0,020	0,036	0,022	0,026	0,014
Ва	0,000	0,004	0,003	0,006	0,001	0,004	0,004	0,003	0,000	0,000	0,001	0,001	0,001	0,000
Са	1,892	1,894	1,960	1,942	1,997	2,000	2,047	2,007	1,778	1,869	2,012	1,863	1,910	1,984
Na	1,774	1,744	1,740	1,727	1,780	1,709	1,783	1,746	1,797	1,797	1,783	1,829	1,747	1,776
К	0,067	0,063	0,055	0,065	0,074	0,071	0,069	0,063	0,134	0,077	0,076	0,074	0,075	0,077

	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-
Amostra	5A	5A	5A	5A	5A	5A	5A	5A	5A	5A
Grão	1	1	1	1	2	2	2	2	3	3
Posição	c1-n1	c1-n2	c1-b2	c1-b3	c2-n1	c2-n2	c2-b1	c2-b2	c3-n1	c3-n2
Mineral	PI	PI	PI	PI	PI	PI	PI	PI	PI	PI
SiO2	55,644	55,019	54,89	57,181	55,134	55,123	55,095	54,601	57,239	56,632
TiO2	0,000	0,000	0,03	0,003	0,011	0,000	0,02	0,026	0,01	0,000
AI2O3	27,717	27,56	27,527	27,224	27,896	27,783	28,102	28,192	27,815	27,867
Cr2O3	0,000	0,003	0,01	0,000	0,000	0,025	0,028	0,008	0,02	0,025
FeO	0,000	0,035	0,107	0,065	0,04	0,004	0,101	0,135	0,009	0,02
MnO	0,000	0,000	0,000	0,032	0,000	0,000	0,000	0,032	0,004	0,000
NiO	0,000	0,000	0,000	0,042	0,000	0,000	0,000	0,019	0,000	0,041
MgO	0,000	0,000	0,013	0,000	0,007	0,000	0,003	0,000	0,000	0,008
BaO	0,019	0,004	0,000	0,000	0,000	0,000	0,000	0,04	0,000	0,032
SrO	0,098	0,033	0,026	0,128	0,000	0,103	0,042	0,095	0,000	0,099
CaO	10,413	10,744	10,337	9,686	10,328	10,438	10,657	10,791	10,211	10,28
Na2O	5,016	4,941	5,031	5,641	5,102	4,922	5,001	4,952	5,211	5,326
K2O	0,256	0,207	0,14	0,232	0,134	0,144	0,139	0,125	0,159	0,192
Total	99,163	98,546	98,111	100,234	98,652	98,542	99,188	99,016	100,678	100,522
Si	10,086	10,046	10,056	10,24	10,038	10,05	9,994	9,94	10,187	10,124
Ti	0,000	0,000	0,004	0,000	0,002	0,000	0,003	0,004	0,001	0,000
Al	5,916	5,926	5,939	5,741	5,981	5,965	6,003	6,044	5,83	5,867
Fe2	0,000	0,005	0,016	0,01	0,006	0,001	0,015	0,021	0,001	0,003
Ва	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,003	0,000	0,002
Са	2,022	2,102	2,029	1,858	2,015	2,039	2,071	2,105	1,947	1,969
Na	1,763	1,749	1,787	1,959	1,801	1,74	1,759	1,748	1,798	1,846
K	0,059	0,048	0,033	0,053	0,031	0,033	0,032	0,029	0,036	0,044

	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-
Amostra	5A	5A	5A	5A	5A	5A	5A	5A	5A
Grão	3	3	3	3	4	4	4	4	4
Posição	c3-n3	c3-b1	c3-b2	c3-b3	c4-n1	c4-n2	c4-b1	c4-b2	c4-b3
Mineral	PI	PI	PI	PI	PI	PI	PI	PI	PI
SiO2	57,171	56,851	56,525	57,42	56,491	57,03	56,967	57,304	56,856
TiO2	0,000	0,008	0,000	0,002	0,024	0,03	0,01	0,000	0,000
AI2O3	27,825	27,961	27,741	27,767	27,185	27,261	27,789	27,416	27,298
Cr2O3	0,000	0,041	0,000	0,013	0,003	0,000	0,000	0,025	0,015
FeO	0,032	0,065	0,036	0,000	0,024	0,015	0,026	0,054	0,064
MnO	0,000	0,000	0,03	0,026	0,018	0,000	0,057	0,036	0,029
NiO	0,000	0,000	0,005	0,018	0,000	0,034	0,012	0,023	0,000
MgO	0,000	0,017	0,003	0,000	0,000	0,008	0,007	0,009	0,000
BaO	0,003	0,000	0,000	0,031	0,000	0,015	0,036	0,000	0,027
SrO	0,07	0,01	0,000	0,044	0,206	0,087	0,022	0,000	0,031
CaO	10,204	10,633	10,447	9,999	10,087	9,963	10,52	9,87	10,126
Na2O	5,074	5,219	5,204	5,303	5,377	5,406	5,355	5,217	5,206
K2O	0,168	0,157	0,159	0,175	0,185	0,191	0,186	0,19	0,172
Total	100,547	100,962	100,15	100,798	99,6	100,04	100,987	100,144	99,824
Si	10,188	10,116	10,133	10,208	10,191	10,226	10,14	10,246	10,215
Ti	0,000	0,001	0,000	0,000	0,003	0,004	0,001	0,000	0,000
Al	5,839	5,859	5,856	5,813	5,775	5,757	5,825	5,773	5,776
Fe2	0,005	0,01	0,005	0,000	0,004	0,002	0,004	0,008	0,01
Ва	0,000	0,000	0,000	0,002	0,000	0,001	0,003	0,000	0,002
Са	1,948	2,027	2,007	1,905	1,95	1,914	2,006	1,891	1,949
Na	1,753	1,801	1,809	1,828	1,881	1,88	1,848	1,809	1,814
K	0,038	0,036	0,036	0,04	0,043	0,044	0,042	0,043	0,039

	IV-RM-		IV-RM-								
Amostra	5A	IV-RM-5A	5A								
Grão	1	1	1	1	2	2	2	2	3	3	3
Posição	c1-n1	c1-n2	c1-b1	c1-b2	c2-n1	c2-n2	c2-b1	c2-b2	c3-n1	c3-n2	c3-b1
Mineral	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita
SiO2	35,630	36,855	37,178	34,508	36,706	36,442	36,594	35,039	37,663	37,501	37,238
TiO2	3,924	4,039	4,067	3,349	4,472	4,263	4,311	4,271	3,970	3,906	3,996
AI2O3	16,748	17,051	17,447	16,414	17,245	17,222	17,049	16,595	17,689	17,390	17,493
Cr2O3	0,010	0,000	0,048	0,007	0,005	0,000	0,000	0,041	0,055	0,012	0,026
FeO	16,155	16,672	16,392	20,479	16,531	16,284	16,385	15,842	15,628	16,009	15,731
MnO	0,030	0,068	0,000	0,043	0,023	0,035	0,021	0,008	0,035	0,013	0,000
MgO	10,967	10,890	11,051	10,144	11,040	11,289	11,122	10,898	11,801	11,719	11,727
BaO	0,192	0,183	0,202	0,130	0,218	0,199	0,179	0,174	0,184	0,122	0,165
CaO	0,093	0,042	0,025	0,141	0,015	0,006	0,045	0,018	0,055	0,033	0,025
Na2O	0,188	0,192	0,257	0,218	0,144	0,128	0,132	0,153	0,148	0,183	0,142
K2O	9,077	9,184	9,318	7,393	9,821	9,735	9,776	9,784	9,432	9,246	9,734
Total	93,031	95,202	96,026	92,899	96,223	95,627	95,638	92,826	96,660	96,157	96,277
Si	5,737	5,792	5,782	5,647	5,726	5,715	5,74	5,68	5,789	5,801	5,766
Ti	0,475	0,477	0,476	0,412	0,525	0,503	0,509	0,521	0,459	0,454	0,465
AIIV	2,263	2,208	2,218	2,353	2,274	2,285	2,26	2,32	2,211	2,199	2,234
AIVI	0,913	0,948	0,977	0,81	0,894	0,896	0,89	0,848	0,991	0,969	0,956
Fe2	2,175	2,191	2,132	2,803	2,156	2,136	2,15	2,148	2,009	2,071	2,037
Cr	0,001	0,000	0,006	0,001	0,001	0,000	0,000	0,005	0,007	0,001	0,003
Mn	0,004	0,009	0,000	0,006	0,003	0,005	0,003	0,001	0,005	0,002	0,000
Mg	2,633	2,551	2,562	2,475	2,567	2,639	2,601	2,634	2,704	2,702	2,707
Ва	0,012	0,011	0,012	0,008	0,013	0,012	0,011	0,011	0,011	0,007	0,01
Са	0,016	0,007	0,004	0,025	0,003	0,001	0,008	0,003	0,009	0,005	0,004
Na	0,059	0,059	0,077	0,069	0,044	0,039	0,04	0,048	0,044	0,055	0,043
K	1,865	1,841	1,849	1,543	1,954	1,948	1,956	2,023	1,85	1,825	1,923

Resultados das análises de química mineral em cristais de biotita em metabasitos (JI-XI-15B e IV-RM-10A), em metapelitos (IV-RM-5A e IV-X-19) e em ortognaisse (IV-RM-7B).

	IV-RM-		IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	JI-XI-	JI-XI-	JI-XI-	JI-XI-
Amostra	5A	IV-RM-5A	5A	5A	5A	5A	5A	15B	15B	15B	15B
Grão	3	3	4	4	4	4	4	1	1	2	2
Posição	c3-b2	c3-b3	c4-n1	c4-n2	c4-b1	c4-b2	c4-b3	c2-n1	c2-n2	c2-n1	c2-n2
Mineral	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita
SiO2	36,715	37,204	37,148	37,189	37,103	37,921	37,269	38,058	38,613	38,987	38,703
TiO2	3,916	4,014	4,115	4,046	4,064	3,948	4,049	4,752	4,880	4,696	5,020
AI2O3	17,389	17,664	17,136	17,449	17,300	17,865	17,365	14,387	14,605	14,546	14,488
Cr2O3	0,019	0,010	0,000	0,000	0,022	0,000	0,055	0,064	0,015	0,077	0,051
FeO	15,750	15,757	16,201	15,847	15,856	15,736	16,407	14,187	13,992	13,713	14,608
MnO	0,011	0,000	0,028	0,014	0,040	0,015	0,035	0,080	0,098	0,120	0,096
MgO	11,722	11,692	11,127	11,215	11,243	12,031	11,617	15,154	15,223	15,670	14,803
BaO	0,111	0,131	0,121	0,180	0,233	0,180	0,159	0,163	0,203	0,250	0,208
CaO	0,022	0,001	0,023	0,013	0,046	0,024	0,012	0,000	0,000	0,018	0,008
Na2O	0,100	0,133	0,120	0,117	0,139	0,108	0,131	0,104	0,089	0,124	0,054
K2O	9,687	9,727	9,812	9,679	9,634	9,903	9,457	10,217	10,450	10,116	10,464
Total	95,544	96,333	95,926	95,794	95,721	97,767	96,589	97,222	98,206	98,414	98,572
Si	5,739	5,755	5,794	5,791	5,788	5,775	5,764	5,834	5,852	5,878	5,861
Ti	0,46	0,467	0,483	0,474	0,477	0,452	0,471	0,548	0,556	0,533	0,572
AIIV	2,261	2,245	2,206	2,209	2,212	2,225	2,236	2,166	2,148	2,122	2,139
AIVI	0,94	0,973	0,942	0,991	0,966	0,979	0,927	0,431	0,459	0,461	0,445
Fe2	2,059	2,038	2,113	2,064	2,069	2,004	2,122	1,819	1,774	1,729	1,850
Cr	0,002	0,001	0,000	0,000	0,003	0,000	0,007	0,008	0,002	0,009	0,006
Mn	0,001	0,000	0,004	0,002	0,005	0,002	0,005	0,010	0,013	0,015	0,012
Mg	2,731	2,696	2,587	2,603	2,615	2,732	2,678	3,463	3,440	3,522	3,342
Ва	0,007	0,008	0,007	0,011	0,014	0,011	0,01	0,010	0,012	0,015	0,012
Са	0,004	0,000	0,004	0,002	0,008	0,004	0,002	0,000	0,000	0,003	0,001
Na	0,030	0,040	0,036	0,035	0,042	0,032	0,039	0,031	0,026	0,036	0,016
K	1,932	1,92	1,952	1,923	1,917	1,924	1,866	1,998	2,021	1,946	2,022

_	IV-RM-		IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-		IV-RM-	IV-RM-
Amostra	7B	IV-RM-7B	7B	7B	7B	7B	7B	7B	7B	7B	IV-RM-7B	7B	7B
Grão	1	2	2	2	3	3	3	3	4	4	4	4	4
.	c1-Incl-				<u> </u>		• •				c1-Biotita2-	<u> </u>	
Posição	n1	c1-n1	c1-b1	c1-b2	c2-b1	c2-b2	c2-n1	c2-n2	c2-n1	c2-n2	n	c2-b1	c2-b2
Mineral	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita	biotita
SiO2	35,552	35,299	35,370	35,461	34,931	35,477	34,655	35,011	35,128	35,113	36,032	35,686	35,398
TiO2	4,150	4,145	3,771	3,920	3,861	4,166	4,057	4,065	3,833	3,978	2,452	3,537	3,929
AI2O3	15,173	16,075	15,963	15,970	15,782	15,674	15,299	15,409	15,591	15,727	17,807	15,973	15,636
Cr2O3	0,013	0,015	0,040	0,000	0,013	0,018	0,022	0,005	0,002	0,032	0,025	0,045	0,018
FeO	22,738	22,396	23,219	22,240	22,407	22,428	22,805	23,038	22,974	23,203	22,861	22,449	22,728
MnO	0,233	0,153	0,133	0,229	0,233	0,218	0,275	0,190	0,179	0,208	0,116	0,196	0,157
MgO	8,142	7,521	7,543	7,693	7,951	7,787	7,578	7,636	7,530	7,655	7,217	7,897	7,544
BaO	0,213	0,251	0,226	0,216	0,088	0,167	0,266	0,175	0,18	0,148	0,060	0,125	0,191
CaO	0,015	0,018	0,006	0,015	0,011	0,004	0,033	0,000	0,003	0,000	0,000	0,031	0,000
Na2O	0,039	0,060	0,057	0,078	0,036	0,036	0,098	0,050	0,058	0,057	0,062	0,061	0,068
K2O	10,132	9,924	9,956	9,737	9,924	10,298	9,944	10,170	10,087	10,037	10,322	9,780	10,025
Total	96,405	95,940	96,289	95,639	95,300	96,273	95,039	95,782	95,586	96,180	96,976	95,828	95,704
Si	5,752	5,721	5,73	5,753	5,705	5,739	5,706	5,718	5,74	5,704	5,758	5,776	5,762
Ti	0,505	0,505	0,46	0,478	0,474	0,507	0,503	0,499	0,471	0,486	0,295	0,431	0,481
AIIV	2,248	2,279	2,27	2,247	2,295	2,261	2,294	2,282	2,26	2,296	2,242	2,224	2,238
AIVI	0,643	0,789	0,776	0,804	0,74	0,725	0,673	0,682	0,74	0,713	1,109	0,82	0,759
Fe2	3,077	3,036	3,146	3,018	3,06	3,034	3,14	3,147	3,139	3,152	3,055	3,038	3,094
Cr	0,002	0,002	0,005	0,000	0,002	0,002	0,003	0,001	0,000	0,004	0,003	0,006	0,002
Mn	0,032	0,021	0,018	0,031	0,032	0,03	0,038	0,026	0,025	0,029	0,016	0,027	0,022
Mg	1,964	1,817	1,822	1,861	1,936	1,878	1,86	1,859	1,834	1,854	1,719	1,905	1,831
Ba	0,014	0,016	0,014	0,014	0,006	0,011	0,017	0,011	0,012	0,009	0,004	0,008	0,012
Са	0,003	0,003	0,001	0,003	0,002	0,001	0,006	0,000	0,001	0,000	0,000	0,005	0,000
Na	0,012	0,019	0,018	0,025	0,011	0,011	0,031	0,016	0,018	0,018	0,019	0,019	0,021
К	2,091	2,052	2,058	2,015	2,068	2,125	2,089	2,119	2,103	2,08	2,104	2,019	2,082

			IV-X-	IV-X-					
Amostra	IV-X-19	IV-X-19	19	19	IV-X-19	IV-X-19	IV-X-19	IV-X-19	IV-X-19
Grão	1	1	1	1	2	2	2	3	3
Posição	c1-n1	c1-n2	c1-n3	c1-b1	c3-n-1	c3-b1	c3-n2	c5-cor1	c5-cor2
Mineral	biotita								
SiO2	38,042	35,916	35,976	36,176	35,659	38,402	38,024	37,887	36,307
TiO2	4,816	4,789	4,792	4,624	4,898	4,932	4,638	3,633	3,414
AI2O3	16,679	16,241	16,022	15,650	16,388	16,810	16,710	16,254	16,691
Cr2O3	0,099	0,075	0,092	0,097	0,029	0,005	0,080	0,041	0,002
FeO	15,007	15,104	14,777	14,565	12,614	12,694	12,600	12,903	13,570
MnO	0,017	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,012
MgO	13,385	12,628	12,584	12,128	13,370	13,733	13,818	14,542	12,239
BaO	0,348	0,234	0,310	0,356	0,028	0,042	0,035	0,003	0,046
CaO	0,000	0,014	0,041	0,164	0,031	0,024	0,031	0,098	0,128
Na2O	0,263	0,246	0,259	0,377	0,201	0,223	0,169	0,277	0,279
K2O	10,079	9,876	9,953	9,633	10,287	10,122	10,286	9,908	9,778
Total	98,895	95,294	94,937	93,875	93,568	97,195	96,523	95,582	92,650
Si	5,741	5,655	5,683	5,767	5,655	5,814	5,804	5,84	5,812
Ti	0,547	0,567	0,569	0,555	0,584	0,562	0,533	0,421	0,411
AIIV	2,259	2,345	2,317	2,233	2,345	2,186	2,196	2,16	2,188
AIVI	0,705	0,666	0,664	0,705	0,716	0,811	0,808	0,79	0,959
Fe2	1,894	1,989	1,952	1,942	1,673	1,607	1,608	1,663	1,817
Cr	0,012	0,009	0,011	0,012	0,004	0,001	0,01	0,005	0,000
Mn	0,002	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,002
Mg	3,011	2,964	2,964	2,882	3,161	3,099	3,144	3,342	2,921
Ва	0,021	0,014	0,019	0,022	0,002	0,002	0,002	0,000	0,003
Са	0,000	0,002	0,007	0,028	0,005	0,004	0,005	0,016	0,022
Na	0,077	0,075	0,079	0,117	0,062	0,065	0,05	0,083	0,087
K	1,941	1,984	2,006	1,959	2,081	1,955	2,003	1,948	1,997

		IV-RM-								
Amostra	IV-RM-5A	5A								
Grão	1	1	1	1	1	2	2	2	2	2
Posição	c1-n1	c1-n2	c1-n3	c1-b1	c1-b2	c2-n1	c2-n2	c2-n3	c2-b1	c2-b2
Mineral	granada	granada	granada	granada	granada	granada	granada	granada	granada	granada
SiO2	38,288	38,201	38,393	38,561	38,201	38,071	37,946	38,029	38,127	38,153
AI2O3	22,144	21,917	22,043	22,153	21,795	21,884	21,723	21,828	21,848	21,842
MgO	4,842	4,858	4,927	5,073	4,697	4,774	4,715	4,643	4,386	4,567
CaO	4,372	4,221	4,292	4,208	4,05	4,927	4,37	0,85	4,428	4,833
MnO	0,982	0,817	0,923	1,0	1,041	0,934	0,939	0,85	1,034	0,999
FeO	29,775	29,994	29,913	29,542	30,073	28,597	29,991	29,405	30,222	29,914
Total	100,403	100,008	100,491	100,537	99,857	99,187	99,684	95,605	100,045	100,308
Si	5,991	6,004	6,003	6,013	6,019	6,013	5,996	6,175	6,007	5,993
Al	4,077	4,065	4,065	4,085	4,068	4,089	4,042	4,354	4,066	4,038
Fe2+	3,897	3,943	3,911	3,852	3,963	3,778	3,963	3,993	3,982	3,93
Mg	1,129	1,138	1,148	1,179	1,103	1,124	1,11	1,124	1,03	1,069
Mn	0,13	0,109	0,122	0,132	0,139	0,125	0,126	0,117	0,138	0,133
Са	0,733	0,711	0,719	0,703	0,684	0,834	0,74	0,148	0,748	0,813

Resultados das análises de química mineral em cristais de granada em metabasito (JI-II-07-36B), em metapelito (IV-RM-5A e IV-X-19) e em ortognaisse (IV-RM-7B)

		IV-RM-									
Amostra	IV-RM-5A	5A									
Grão	3	3	3	3	3	3	4	4	4	4	4
Posição	c3-n1	c3-n2	c3-n3	c3-b1	c3-b2	c3-b3	c4-n1	c4-n2	c4-b1	c4-b2	c4-b3
Mineral	granada	granada	granada	granada	granada	granada	granada	granada	granada	granada	granada
SiO2	38,525	38,34	38,384	38,383	38,449	38,362	37,845	38,354	37,867	38,361	38,279
AI2O3	21,987	21,876	21,794	21,994	22,088	22,074	21,757	21,983	21,684	21,98	22,069
MgO	4,704	4,604	4,728	4,701	4,583	4,654	4,346	4,55	3,882	4,106	4,482
CaO	4,57	4,512	4,577	4,534	4,32	2,652	4,013	4,211	3,499	3,691	4,253
MnO	0,96	0,882	0,976	1,029	1,015	0,991	1,009	1,057	1,153	1,086	0,957
FeO	29,248	29,798	29,957	29,998	30,266	31,947	31,007	30,517	32,345	31,559	30,818
Total	99,994	100,012	100,416	100,639	100,721	100,68	99,977	100,672	100,43	100,783	100,858
Si	6,039	6,025	6,016	6,002	6,008	6,014	5,986	6,005	5,993	6,018	5,989
Al	4,102	4,077	4,042	4,056	4,077	4,093	4,043	4,062	4,039	4,084	4,059
Fe2+	3,834	3,916	3,926	3,923	3,955	4,188	4,102	3,996	4,281	4,141	4,032
Mg	1,099	1,078	1,104	1,096	1,067	1,087	1,025	1,062	0,916	0,96	1,045
Mn	0,127	0,117	0,13	0,136	0,134	0,132	0,135	0,14	0,155	0,144	0,127
Са	0,768	0,76	0,769	0,76	0,723	0,445	0,68	0,706	0,593	0,62	0,713

Amostra	IV-X-19										
Grão	1	1	1	1	2	2	2	2	3	3	3
Posição	c1-n1	c1-n2	c1-n3	c1-b1	c3-b1	c3-b2	c3n-1	c3-n2	c4-n1	c4-b1	c4-b2
Mineral	granada										
SiO2	37,349	37,854	38,328	39,040	37,968	38,148	38,193	38,619	38,841	39,293	39,267
AI2O3	22,473	22,445	22,447	22,210	22,091	22,092	22,232	22,065	22,282	22,390	22,534
Cr2O3	0,009	0,000	0,000	0,000	0,023	0,000	0,032	0,032	0,002	0,050	0,032
FeO	31,930	31,367	31,251	33,078	30,244	30,528	30,577	30,600	30,709	31,018	30,899
MnO	0,756	0,784	0,764	0,810	0,747	0,774	0,836	0,765	0,830	0,811	0,770
MgO	6,963	6,879	6,750	6,196	6,725	6,795	6,838	6,872	6,729	6,912	6,908
CaO	1,322	1,330	1,426	1,013	1,094	1,094	1,067	1,082	1,175	1,167	1,029
Na2O	0,060	0,040	0,032	0,032	0,059	0,022	0,039	0,001	0,054	0,021	0,005
Total	100,916	100,717	101,078	102,439	99,006	99,521	99,913	100,214	100,768	101,762	101,517
Si	5,797	5,883	5,942	6,009	6,000	6,000	5,984	6,037	6,039	6,046	6,054
AIVI	3,905	3,991	4,040	4,026	4,111	4,092	4,086	4,062	4,080	4,057	4,092
Cr	0,001	0,000	0,000	0,000	0,003	0,000	0,004	0,004	0,000	0,006	0,004
Fe2	4,145	4,077	4,052	4,258	3,997	4,016	4,007	4,000	3,993	3,992	3,984
Mg	1,611	1,594	1,560	1,422	1,584	1,593	1,597	1,601	1,560	1,586	1,588
Mn	0,099	0,103	0,100	0,106	0,100	0,103	0,111	0,101	0,109	0,106	0,101
Са	0,22	0,221	0,237	0,167	0,185	0,184	0,179	0,181	0,196	0,192	0,170
Na	0,018	0,012	0,010	0,010	0,018	0,007	0,012	0,000	0,016	0,006	0,001

								JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-
Amostra	IV-X-19	36B	36B	36B	36B	36B						
Grão	4	4	4	4	4	4	4	1	1	2	2	2
Posição	c5-1	c5-2	c5-3	c5-4	c5-5	c5-6	c5-7					
Mineral	granada	granada	granada	granada	granada							
SiO2	38,672	38,629	38,807	38,487	38,431	38,459	38,673	38,503	38,125	38,048	38,668	38,842
AI2O3	22,312	22,323	22,103	22,368	22,115	22,086	22,111	22,017	21,322	21,537	21,636	20,958
Cr2O3	0,045	0,027	0,023	0,050	0,011	0,000	0,007	0,01	0,052	0,000	0,000	0,054
FeO	31,439	31,088	31,417	31,173	31,072	31,052	31,156	26,507	26,807	26,206	27,144	27,288
MnO	0,737	0,715	0,769	0,864	0,753	0,682	0,770	1,040	1,010	0,949	1,152	1,277
MgO	6,532	6,543	6,764	6,650	6,604	6,553	6,714	5,381	4,875	5,164	4,590	4,437
CaO	1,094	1,234	1,153	1,164	1,211	1,015	0,966	7,097	7,227	7,679	7,400	7,441
Na2O	0,018	0,011	0,020	0,020	0,039	0,022	0,010	0,012	0,033	0,027	0,016	0,010
Total	100,904	100,597	101,115	100,828	100,239	99,961	100,450	100,680	99,533	99,734	100,661	100,450
Si	6,016	6,021	6,020	5,986	6,009	6,035	6,018	2,988	3,006	2,999	3,007	3,030
AIVI	4,088	4,098	4,038	4,083	4,072	4,081	4,055	2,000	1,980	1,999	1,981	1,925
Cr	0,006	0,003	0,003	0,006	0,001	0,000	0,000	0,001	0,003	0,000	0,000	0,003
Fe2	4,090	4,053	4,075	4,055	4,063	4,075	4,054	1,713	1,753	1,678	1,784	1,814
Mg	1,515	1,520	1,564	1,542	1,539	1,533	1,558	0,623	0,573	0,607	0,532	0,516
Mn	0,097	0,094	0,101	0,114	0,100	0,091	0,101	0,068	0,067	0,063	0,076	0,084
Са	0,182	0,206	0,192	0,194	0,203	0,171	0,161	0,590	0,611	0,649	0,617	0,622
Na	0,005	0,003	0,006	0,006	0,012	0,007	0,003	0,002	0,005	0,004	0,002	0,002

	IV-RM-		IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-
Amostra	7B	IV-RM-7B	7B	7B	7B	7B	7B	7B
Grão	1	1	1	1	1	1	1	1
Posição	c2-b1	c2-b2	c2-b3	c2-b4	c2-n1	c2-n2	c2-n3	c2-n4
Mineral	granada	granada	granada	granada	granada	granada	granada	granada
SiO2	37,231	37,846	37,611	37,357	37,830	37,798	37,405	37,427
AI2O3	20,310	20,617	20,776	20,649	20,679	20,926	20,762	20,810
FeO	26,387	25,808	26,325	26,010	26,954	27,309	26,962	27,422
MnO	3,710	4,857	3,633	4,404	2,549	2,687	2,575	2,914
MgO	1,998	1,772	2,263	1,679	2,614	2,513	2,524	2,423
CaO	8,870	8,928	9,175	9,137	8,950	8,921	9,144	9,287
Na2O	0,002	0,012	0,017	0,007	0,000	0,000	0,035	0,036
Total	98,665	99,872	99,989	99,270	99,652	100,261	99,601	100,484
TSi	6,023	6,051	5,993	6,009	6,028	5,994	5,97	5,961
AIVI	3,869	3,882	3,892	3,912	3,881	3,902	3,873	3,906
Cr	0,000	0,002	0,001	0,001	0,002	0,002	0,005	
Fe2	3,570	3,451	3,508	3,499	3,592	3,622	3,599	3,652
Mg	0,482	0,422	0,538	0,403	0,621	0,594	0,601	0,575
Mn	0,508	0,658	0,490	0,600	0,344	0,361	0,348	0,393
Са	1,537	1,530	1,566	1,575	1,528	1,516	1,564	1,585
Na	0,000	0,003	0,000	0,000	0,000	0,000	0,001	

	IV-RM-	IV-RM-									
Amostra	10A	10A									
Grão	1	1	1	1	3	3	3	3	3	4	4
										c3-CPX2-	c3-CPX2-
Posição	c1-b1	c1-b2	c1-n1	c1-b1	c3-b1	c3-b2	c3-n1	c3-n2	c3-n3	n1	n2
Mineral	срх	срх									
SiO2	51,825	52,414	52,170	52,531	51,611	51,376	51,698	52,076	51,417	42,761	42,699
TiO2	0,177	0,114	0,127	0,120	0,160	0,175	0,123	0,130	0,156	1,202	1,203
AI2O3	1,813	1,701	1,688	1,443	1,844	2,033	1,744	1,771	1,822	11,252	11,344
Cr2O3	0,000	0,000	0,016	0,021	0,018	0,000	0,016	0,000	0,026	0,000	0,089
FeO	9,288	9,494	9,049	9,131	9,552	9,777	9,859	9,611	9,534	16,165	16,165
MnO	0,521	0,506	0,533	0,620	0,460	0,493	0,617	0,589	0,524	0,345	0,410
MgO	11,858	11,947	11,910	12,057	11,431	11,322	11,608	11,644	11,337	10,030	10,042
CaO	22,844	22,456	22,748	23,141	23,163	23,196	22,889	22,937	22,937	12,287	12,157
Na2O	0,635	0,532	0,523	0,478	0,630	0,539	0,565	0,566	0,626	1,135	1,106
K2O	0,004	0,005	0,012	0,011	0,001	0,010	0,000	0,001	0,000	1,544	1,548
Total	99,035	99,183	98,790	99,593	98,989	99,006	99,160	99,394	98,409	96,789	96,842
Si	1,967	1,981	1,979	1,98	1,965	1,958	1,965	1,971	1,967	1,697	1,693
Ti	0,005	0,003	0,004	0,003	0,005	0,005	0,004	0,004	0,004	0,036	0,036
AI (IV)	0,033	0,019	0,021	0,02	0,035	0,042	0,035	0,029	0,033	0,303	0,307
AI (VI)	0,048	0,057	0,054	0,044	0,048	0,049	0,044	0,05	0,049	0,223	0,224
Fe(iii)	0,033	0,000	0,000	0,007	0,036	0,035	0,038	0,019	0,03	0,256	0,252
Cr	0,000	0,000	0,000	0,001	0,001	0,000	0,000	0,000	0,001	0,000	0,003
Fe(ii)	0,261	0,3	0,287	0,281	0,267	0,275	0,275	0,285	0,274	0,269	0,273
Mn	0,017	0,016	0,017	0,02	0,015	0,016	0,02	0,019	0,017	0,012	0,014
Mg	0,671	0,673	0,673	0,677	0,649	0,643	0,658	0,657	0,647	0,593	0,594
Ca	0,929	0,909	0,924	0,934	0,945	0,947	0,932	0,930	0,940	0,522	0,517
Na	0,047	0,039	0,038	0,035	0,047	0,040	0,042	0,042	0,046	0,087	0,085
К	0,000	0,000	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,078	0,078

Resultados das análises de química mineral em cristais de clinopiroxênio em metabasitos (JI-II-07-36B; JI-XI-15B e IV-RM-10A).

	IV-RM-	IV-RM-	IV-RM-								
Amostra	10A	10A	10A								
Grão	2	2	2	5	5	6	6	6	6	5	5
	c1-CPX1-	c1-CPX1-	c1-CPX1-	c2-CPX1-	c2-CPX1-	c2-CPX2-	c2-CPX2-	c2-CPX2-	c2-CPX2-	c2-	c2-CPX1-
Posição	n1	n2	n3	n1	b1	n1	b1	b2	b3	CPX1n2	b2
Mineral	срх	срх	срх								
SiO2	51,847	52,067	51,577	51,189	51,738	50,054	50,324	50,203	50,382	50,268	50,843
TiO2	0,118	0,151	0,165	0,145	0,147	0,165	0,182	0,129	0,119	0,187	0,145
AI2O3	1,756	1,736	2,227	1,819	1,559	1,845	1,874	1,786	1,835	1,802	1,721
Cr2O3	0,050	0,000	0,039	0,000	0,000	0,075	0,012	0,037	0,000	0,020	0,010
FeO	9,478	9,487	9,707	9,681	9,008	9,734	9,494	9,614	9,747	9,478	9,153
MnO	0,518	0,506	0,523	0,598	0,559	0,580	0,500	0,628	0,521	0,492	0,574
MgO	11,978	11,852	11,567	11,300	11,512	10,821	10,736	10,779	10,790	10,911	10,984
CaO	22,846	22,849	22,676	23,614	24,338	23,838	24,030	23,962	23,824	23,730	23,774
Na2O	0,575	0,585	0,644	0,522	0,501	0,586	0,655	0,594	0,520	0,532	0,589
K2O	0,022	0,019	0,008	0,014	0,011	0,013	0,004	0,000	0,000	0,003	0,005
Total	99,237	99,273	99,170	98,915	99,389	97,732	97,883	97,786	97,753	97,423	97,834
Si	1,965	1,971	1,957	1,955	1,962	1,943	1,948	1,947	1,952	1,951	1,962
Ti	0,003	0,004	0,005	0,004	0,004	0,005	0,005	0,004	0,003	0,005	0,004
AI (IV)	0,035	0,029	0,043	0,045	0,038	0,057	0,052	0,053	0,048	0,049	0,038
AI (VI)	0,044	0,048	0,057	0,037	0,032	0,027	0,034	0,029	0,035	0,034	0,04
Fe(iii)	0,04	0,024	0,035	0,057	0,052	0,094	0,085	0,089	0,067	0,065	0,051
Cr	0,001	0,000	0,001	0,000	0,000	0,002	0,000	0,001	0,000	0,001	0,000
Fe(ii)	0,26	0,275	0,273	0,25	0,233	0,22	0,221	0,22	0,247	0,241	0,243
Mn	0,017	0,016	0,017	0,019	0,018	0,019	0,016	0,021	0,017	0,016	0,019
Mg	0,677	0,669	0,654	0,644	0,651	0,626	0,62	0,623	0,623	0,631	0,632
Ca	0,928	0,927	0,922	0,966	0,989	0,991	0,997	0,996	0,989	0,987	0,983
Na	0,042	0,043	0,047	0,039	0,037	0,044	0,049	0,045	0,039	0,04	0,044
К	0,001	0,001	0,000	0,001	0,001	0,001	0,000	0,000	0,000	0,000	0,000

	JI-XI-												
Amostra	15B												
Grão	1	1	1	1	2	2	2	2	3	3	3	3	3
Posição	c1-n1	c1-n2	c1-b1	c1-b2	c2-n1	c2-n2	c2-b1	c2-b2	c4-n1	c4-n2	c4-b1	c4-b2	c4-b3
Mineral	срх												
SiO2	51,176	51,147	51,503	51,922	51,420	51,681	51,034	51,078	51,698	52,531	51,218	51,562	50,786
TiO2	0,360	0,371	0,304	0,202	0,150	0,221	0,350	0,211	0,266	0,334	0,172	0,228	0,257
Al2O3	3,000	2,770	2,449	2,157	2,186	2,195	2,586	2,234	2,340	2,586	2,038	2,195	2,220
Cr2O3	0,008	0,061	0,047	0,092	0,024	0,058	0,116	0,032	0,018	0,034	0,066	0,005	0,042
FeO	9,723	9,602	9,449	9,347	9,167	8,972	9,443	9,191	9,235	9,512	9,065	8,768	9,121
MnO	0,258	0,315	0,280	0,324	0,269	0,308	0,314	0,270	0,288	0,265	0,270	0,267	0,315
MgO	12,257	12,311	12,398	12,776	12,758	12,830	12,287	12,411	12,889	12,804	12,619	12,805	12,345
CaO	21,900	22,425	22,612	22,513	22,306	21,978	22,462	22,357	22,207	22,318	22,389	22,417	22,096
Na2O	0,541	0,509	0,513	0,432	0,469	0,514	0,566	0,555	0,504	0,556	0,466	0,504	0,512
K2O	0,093	0,003	0,004	0,004	0,013	0,014	0,005	0,057	0,000	0,008	0,004	0,012	0,014
Si	1,933	1,93	1,941	1,95	1,95	1,955	1,933	1,947	1,946	1,947	1,952	1,952	1,948
AI (IV)	0,067	0,07	0,059	0,05	0,05	0,045	0,067	0,053	0,054	0,053	0,048	0,048	0,052
AI (VI)	0,066	0,053	0,05	0,046	0,047	0,053	0,049	0,047	0,05	0,06	0,043	0,05	0,049
T AI	0,133	0,123	0,109	0,096	0,097	0,098	0,116	0,1	0,104	0,113	0,091	0,098	0,101
Fe(iii)	0,037	0,046	0,042	0,032	0,043	0,023	0,055	0,054	0,039	0,021	0,041	0,035	0,039
Cr	0	0,002	0,001	0,003	0,001	0,002	0,003	0,001	0,001	0,001	0,002	0	0,001
Ti	0,01	0,011	0,009	0,006	0,004	0,006	0,01	0,006	0,008	0,009	0,005	0,006	0,007
Fe(ii)	0,27	0,256	0,255	0,26	0,247	0,26	0,243	0,237	0,251	0,273	0,247	0,242	0,253
Mn	0,008	0,01	0,009	0,01	0,009	0,01	0,01	0,009	0,009	0,008	0,009	0,009	0,01
Mg	0,69	0,693	0,697	0,715	0,721	0,724	0,694	0,705	0,723	0,707	0,717	0,723	0,706
Са	0,886	0,907	0,913	0,906	0,906	0,891	0,912	0,913	0,895	0,886	0,914	0,909	0,908
Na	0,04	0,037	0,037	0,031	0,034	0,038	0,042	0,041	0,037	0,04	0,034	0,037	0,038
K	0,004	0	0	0	0,001	0,001	0	0,003	0	0	0	0,001	0,001

	JI-07-II-									
Amostra	36B									
Grão	1	1	1	1	2	2	2	2	2	2
	cp1-cpx1-	ср1-срх-	ср1-срх-	cp1-cpx2-	ср2-срх-	ср2-срх-	ср2-срх-	cp2-cpx-	cp2-cpx2-	cp2-cpx2-
Posição	n1	n1	b1	n1	n1	n2	b1	b2	n	b
Mineral	срх									
SiO2	51,352	51,200	51,547	43,277	50,656	51,268	50,472	50,732	51,698	51,791
TiO2	0,131	0,145	0,155	1,557	0,184	0,166	0,131	0,168	0,207	0,129
AI2O3	1,505	1,990	1,579	10,865	2,149	1,833	2,025	1,491	1,886	1,754
Cr2O3	0,000	0,053	0,079	0,090	0,000	0,003	0,031	0,000	0,058	0,053
FeO	8,873	9,037	8,723	13,380	11,252	10,402	11,425	10,040	10,214	9,783
MnO	0,072	0,146	0,124	0,033	0,191	0,134	0,199	0,196	0,184	0,167
MgO	12,634	12,295	12,684	11,715	11,383	11,784	11,523	11,533	11,760	11,904
CaO	22,974	22,685	23,156	12,120	22,349	21,354	21,688	23,068	22,512	22,811
Na2O	0,33	0,375	0,276	1,193	0,410	0,363	0,349	0,310	0,338	0,332
K2O	0,006	0,021	0,018	0,937	0,024	0,024	0,013	0,009	0,021	0,000
Si	1,965	1,958	1,962	1,712	1,945	1,976	1,951	1,962	1,966	1,97
AI (IV)	0,035	0,042	0,038	0,288	0,055	0,024	0,049	0,038	0,034	0,03
AI(VI)	0,033	0,048	0,033	0,219	0,042	0,06	0,043	0,03	0,05	0,048
T AI	0,068	0,09	0,071	0,507	0,097	0,084	0,092	0,068	0,084	0,078
Fe(iii)	0,029	0,02	0,022	0,165	0,051	0	0,037	0,032	0	0
Cr	0	0,002	0,002	0,003	0	0	0,001	0	0,002	0,002
Ti	0,004	0,004	0,004	0,046	0,005	0,005	0,004	0,005	0,006	0,004
Fe(ii)	0,254	0,269	0,256	0,271	0,308	0,336	0,331	0,292	0,325	0,311
Mn	0,002	0,005	0,004	0,001	0,006	0,004	0,007	0,006	0,006	0,005
Mg	0,721	0,701	0,72	0,691	0,652	0,677	0,664	0,665	0,667	0,675
Ca	0,942	0,929	0,944	0,514	0,919	0,882	0,898	0,956	0,917	0,929
Na	0,024	0,028	0,02	0,092	0,031	0,027	0,026	0,023	0,025	0,024
K	0	0,001	0,001	0,047	0,001	0,001	0,001	0	0,001	0

	JI-XI-	JI-XI-	JI-XI-	JI-XI-	JI-XI-	JI-XI-	JI-XI-	JI-XI-
Amostra	15B	15B	15B	15B	15B	15B	15B	15B
Grão	1	1	1	1	2	2	3	3
Posição	c1-b1	c1-n1	c1-n2	c1-b2	c2-b1	c2-n1	c4-n1	c4-n2
Mineral	орх	орх	орх	орх	орх	орх	орх	орх
SiO2	52,476	52,633	52,347	52,726	51,899	51,955	52,183	52,180
TiO2	0,020	0,040	0,051	0,037	0,049	0,058	0,047	0,068
AI2O3	1,355	1,293	1,339	1,547	1,341	1,373	1,375	1,503
Cr2O3	0,017	0,034	0,000	0,000	0,01	0,000	0,037	0,025
FeO	24,470	24,737	25,086	24,370	24,857	25,034	24,605	24,603
MnO	0,788	0,825	0,843	0,858	0,851	0,858	0,908	0,803
MgO	20,604	20,541	20,306	20,626	20,174	20,412	20,506	20,828
CaO	0,430	0,551	0,473	0,385	0,416	0,432	0,439	0,422
Na2O	0,016	0,028	0,038	0,011	0,032	0,017	0,013	0,020
K2O	0,016	0,014	0,014	0,000	0,007	0,000	0,005	0,000
Total	100,220	100,791	100,507	100,611	99,706	100,168	100,180	100,459
Si	1,971	1,97	1,967	1,971	1,967	1,961	1,965	1,958
AI (IV)	0,029	0,03	0,033	0,029	0,033	0,039	0,035	0,042
AI (VI)	0,031	0,027	0,027	0,039	0,027	0,022	0,026	0,024
T AI	0,06	0,057	0,06	0,068	0,06	0,061	0,061	0,066
Fe(iii)	0	0,003	0,01	0	0,009	0,023	0,009	0,023
Cr	0,001	0,001	0	0	0	0	0,001	0,001
Ti	0,001	0,001	0,001	0,001	0,001	0,002	0,001	0,002
Fe(ii)	0,769	0,771	0,778	0,763	0,778	0,765	0,766	0,748
Mn	0,025	0,026	0,027	0,027	0,027	0,027	0,029	0,026
Mg	1,154	1,146	1,138	1,149	1,14	1,148	1,151	1,165
Са	0,017	0,022	0,019	0,015	0,017	0,017	0,018	0,017
Na	0,001	0,002	0,003	0,001	0,002	0,001	0,001	0,001
K	0,001	0,001	0,001	0,000	0,000	0,000	0	0,000

Resultados das análises de química mineral em cristais de ortopiroxênio em metabasitos (JI-II-07-36B; JI-XI-15B).

	JI-XI-	JI-XI-	JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-	JI-07-II-
Amostra	15B	15B	36B	36B	36B	36B	36B	36B
Grão	3	3	1	1	1	1	2	2
Posição	c4-b1	c4-b2	c1-n1	c1-n2	c1-b1	c1-b2	c2-n1	c2-b1
Mineral	орх	орх	орх	орх	орх	орх	орх	орх
SiO2	52,096	51,943	50,367	50,785	51,226	51,087	52,316	51,992
TiO2	0,022	0,039	0,031	0,064	0,047	0,035	0,045	0,074
AI2O3	1,087	1,426	1,216	1,192	1,002	1,054	1,117	1,211
Cr2O3	0,022	0,000	0,007	0,037	0,051	0,017	0,044	0,049
FeO	24,706	24,947	26,071	26,332	26,476	25,985	26,887	27,585
MnO	0,987	0,838	0,322	0,315	0,280	0,230	0,471	0,373
MgO	20,558	20,041	18,708	19,123	19,029	18,861	17,981	17,999
CaO	0,400	0,424	0,487	0,539	0,482	0,512	0,705	0,535
Na2O	0,011	0,023	0,007	0,030	0,041	0,043	0,028	0,034
K2O	0,000	0,001	0,002	0,011	0,028	0,014	0,018	0,003
Total	100,070	99,721	97,232	98,487	98,690	97,912	99,669	99,855
Si	1,969	1,968	1,970	1,963	1,974	1,981	1,997	1,985
AI (IV)	0,031	0,032	0,03	0,037	0,026	0,019	0,003	0,015
AI (VI)	0,017	0,031	0,026	0,017	0,02	0,029	0,047	0,04
T AI	0,048	0,063	0,056	0,054	0,046	0,048	0,05	0,055
Fe(iii)	0,019	0,001	0,005	0,026	0,009	0	0	0
Cr	0,001	0	0	0,001	0,002	0,001	0,001	0,001
Ti	0,001	0,001	0,001	0,002	0,001	0,001	0,001	0,002
Fe(ii)	0,761	0,789	0,847	0,823	0,844	0,843	0,863	0,884
Mn	0,032	0,027	0,011	0,01	0,009	0,008	0,015	0,012
Mg	1,158	1,132	1,091	1,102	1,093	1,09	1,023	1,025
Са	0,016	0,017	0,02	0,022	0,02	0,021	0,029	0,022
Na	0,001	0,002	0,001	0,002	0,003	0,003	0,002	0,003
K	0	0,000	0	0,001	0,001	0,001	0,001	0

	IV-RM-	IV-RM-						
Amostra	10A	10A						
Grão	1	1	3	3	3	3	1	1
Posição	c1-b1	c1-b2	c3-b1	c3-n1	c3-n2	c3-n3	c1-1-n1	c1-1-n2
Mineral	Hbl	Hbl						
SiO2	42,375	43,468	42,429	41,788	41,964	42,559	42,472	42,606
TiO2	1,294	1,000	1,054	1,335	1,368	1,315	1,231	1,280
AI2O3	11,176	10,871	11,274	11,492	11,321	11,558	11,186	10,870
Cr2O3	0,021	0,020	0,000	0,049	0,036	0,054	0,048	0,000
FeO	15,759	15,899	15,579	16,458	16,631	16,301	16,147	16,121
MnO	0,376	0,434	0,475	0,466	0,447	0,527	0,417	0,427
MgO	10,138	10,440	9,973	9,891	10,080	9,820	10,005	10,100
CaO	11,883	11,811	11,894	11,878	11,892	12,026	12,026	11,973
Na2O	1,172	1,135	1,193	1,215	1,175	1,215	1,129	1,155
K2O	1,501	1,400	1,470	1,686	1,669	1,597	1,546	1,557
Total	95,713	96,580	95,388	96,310	96,631	97,027	96,332	96,089
Si	6,47	6,55	6,504	6,37	6,367	6,439	6,466	6,495
AI (IV)	1,530	1,450	1,496	1,630	1,633	1,561	1,534	1,505
AI (VI)	0,481	0,480	0,541	0,435	0,392	0,499	0,473	0,448
TAI	2,011	1,93	2,037	2,065	2,025	2,06	2,007	1,953
Fe(iii)	0,223	0,327	0,164	0,316	0,389	0,193	0,217	0,209
Ti	0,149	0,113	0,122	0,153	0,156	0,150	0,141	0,147
Cr	0,003	0,002	0	0,006	0,004	0,006	0,006	0
Fe(ii)	1,789	1,677	1,833	1,782	1,721	1,869	1,839	1,846
Mn	0,049	0,055	0,062	0,060	0,057	0,068	0,054	0,055
Mg	2,308	2,345	2,279	2,248	2,280	2,215	2,271	2,295
Са	1,944	1,907	1,953	1,940	1,933	1,949	1,961	1,955
Na	0,347	0,332	0,355	0,359	0,346	0,356	0,333	0,341
К	0,292	0,269	0,287	0,328	0,323	0,308	0,3	0,303
Ca (B)	1,944	1,907	1,953	1,94	1,933	1,949	1,961	1,955
Na (B)	0,056	0,093	0,047	0,06	0,067	0,051	0,039	0,045

Resultados das análises de química mineral em cristais de anfibólio em metabasitos (JI-XI-15B e IV-RM-10A).

Na (A)	0,291	0,238	0,308	0,299	0,279	0,306	0,295	0,297
K (A)	0,292	0,269	0,287	0,328	0,323	0,308	0,3	0,303
	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-	IV-RM-
Amostra	10A	10A	10A	10A	10A	10A	10A	10A
Grão	1	1	2	2	4	4	4	4
Posição	c1-1-n3	c1-1-n4	c1-2-n1	c1-2-n2	c2-b1	c2-n1	c2-n2	c2-b2
Mineral	Hbl	Hbl	Hbl	Hbl	Hbl	Hbl	Hbl	Hbl
SiO2	42,365	42,719	42,885	42,674	42,119	42,300	41,265	41,137
TiO2	1,411	1,404	1,276	1,314	1,361	1,431	1,390	1,295
Al2O3	11,185	11,344	11,279	11,261	11,381	11,402	11,774	11,371
Cr2O3	0,041	0,066	0,013	0,000	0,034	0,053	0,002	0,000
FeO	15,996	16,084	15,986	16,088	16,676	16,135	16,659	16,170
MnO	0,380	0,353	0,382	0,382	0,486	0,389	0,458	0,349
MgO	9,956	10,075	10,196	10,205	9,589	9,693	9,170	9,372
CaO	11,949	11,824	12,109	12,022	12,341	12,386	12,291	12,313
Na2O	1,229	1,178	1,265	1,130	1,200	1,232	1,265	1,240
K2O	1,652	1,705	1,662	1,593	1,661	1,679	1,751	1,696
Total	96,262	96,793	97,063	96,712	96,961	96,705	96,057	94,943
Si	6,466	6,46	6,48	6,456	6,424	6,453	6,372	6,411
AI (IV)	1,534	1,54	1,52	1,544	1,576	1,547	1,628	1,589
AI (VI)	0,477	0,482	0,488	0,464	0,47	0,502	0,515	0,499
TAI	2,011	2,022	2,008	2,008	2,046	2,049	2,143	2,088
Fe(iii)	0,135	0,225	0,129	0,244	0,079	0	0	0
Ti	0,162	0,16	0,145	0,15	0,156	0,164	0,161	0,152
Cr	0,005	0,008	0,002	0	0,004	0,006	0	0
Fe(ii)	1,906	1,809	1,89	1,791	2,048	2,058	2,151	2,107
Mn	0,049	0,045	0,049	0,049	0,063	0,05	0,06	0,046
Mg	2,265	2,271	2,297	2,302	2,18	2,204	2,111	2,177
Са	1,954	1,916	1,96	1,949	2,017	2,024	2,033	2,056
Na	0,364	0,345	0,371	0,331	0,355	0,364	0,379	0,375
К	0,322	0,329	0,32	0,307	0,323	0,327	0,345	0,337
Ca (B)	1,954	1,916	1,96	1,949	2,017	2,024	2,033	2,056

Na (B)	0,046	0,084	0,04	0,051	-0,017	-0,024	-0,033	-0,056		
Na (A)	0,317	0,261	0,331	0,28	0,371	0,388	0,412	0,43		
K (A)	0,322	0,329	0,32	0,307	0,323	0,327	0,345	0,337		
Amostra	JI-XI-15B									
Grão	1	1	2	2	2	2	3	3	3	3
	c1-	c1-					c2-	c2-		
Posição	coron1	coron2	c1-n1	c1-n2	c1-b1	c1-b2	coron1	coron2	c2-n1	c2-n2
Mineral	Hbl									
SiO2	43.168	43.005	42.755	43.029	42.045	43.000	42.696	41.920	42.581	42.767
TiO2	1.580	1.602	1.792	1.918	1.861	1.804	1.451	1.640	1.565	1.571
AI2O3	12.527	12.547	11.990	11.689	12.022	11.753	11.893	12.291	11.851	11.988
Cr2O3	0.052	0.000	0.008	0.052	0.013	0.036	0.062	0.049	0.046	0.067
FeO	14.141	14.828	14.216	14.084	14.481	14.684	13.533	13.783	14.600	14.336
MnO	0.183	0.149	0.181	0.185	0.197	0.194	0.147	0.157	0.158	0.19
MgO	12.078	11.787	11.663	11.792	11.244	11.464	12.222	11.718	11.649	11.433
CaO	11.938	11.749	11.694	11.795	11.797	11.689	12.029	11.801	11.789	11.735
Na2O	1.248	1.293	1.293	1.326	1.301	1.392	1.182	1.240	1.340	1.270
K2O	1.666	1.683	1.891	1.790	1.738	1.687	1.787	1.761	1.707	1.699
Total	98.607	98.727	97.594	97.796	96.762	97.838	97.071	96.413	97.297	97.134
Si	6.295	6.275	6.340	6.371	6.307	6.369	6.342	6.278	6.329	6.367
AI (IV)	1.705	1.725	1.660	1.629	1.693	1.631	1.658	1.722	1.671	1.633
AI (VI)	0.448	0.433	0.435	0.411	0.432	0.42	0.424	0.447	0.404	0.47
TAI	2.153	2.158	2.095	2.04	2.125	2.051	2.082	2.169	2.075	2.103
Fe(iii)	0.511	0.589	0.379	0.325	0.336	0.376	0.394	0.416	0.448	0.371
Ti	0.173	0.176	0.2	0.214	0.21	0.201	0.162	0.185	0.175	0.176
Cr	0.006	0.000	0.001	0.006	0.002	0.004	0.007	0.006	0.005	0.008
Fe(ii)	1.213	1.221	1.384	1.419	1.48	1.442	1.287	1.31	1.366	1.414
Mn	0.023	0.018	0.023	0.023	0.025	0.024	0.018	0.02	0.02	0.024
Mg	2.626	2.564	2.578	2.603	2.515	2.531	2.707	2.616	2.581	2.537
Ca	1.865	1.837	1.858	1.871	1.896	1.855	1.914	1.893	1.877	1.872
Na	0.353	0.366	0.372	0.381	0.378	0.4	0.34	0.36	0.386	0.367
К	0.310	0.313	0.358	0.338	0.333	0.319	0.339	0.336	0.324	0.323
	-	_								

Ca (B)	1.865	1.837	1.858	1.871	1.896	1.855	1.914	1.893	1.877	1.872
Na (B)	0.135	0.163	0.142	0.129	0.104	0.145	0.086	0.107	0.123	0.128
Na (A)	0.218	0.202	0.229	0.252	0.274	0.255	0.255	0.253	0.263	0.238
K (A)	0.31	0.313	0.358	0.338	0.333	0.319	0.339	0.336	0.324	0.323
Amostra	JI-XI-15B									
Grão	4	4	4	4	4	5	5	5		
Posição	c4-n1	c4-n2	c4-n3	c4-b1	c4-b2	c2-b1	c2-b2	c2-n3		
Mineral	Hbl									
SiO2	41.402	42.904	44.553	41.270	42.414	41.449	42.611	42.542		
TiO2	2.100	2.006	2.320	2.197	1.700	1.712	1.332	1.512		
Al2O3	12.480	11.793	14.356	12.011	11.197	12.093	11.857	11.738		
Cr2O3	0.003	0.038	0.044	0.126	0.054	0.01	0.051	0.039		
FeO	14.383	14.415	14.253	14.917	14.119	14.805	14.802	14.410		
MnO	0.221	0.175	0.159	0.158	0.171	0.21	0.171	0.106		
MgO	10.335	11.472	11.829	10.835	11.872	11.116	11.447	11.470		
CaO	11.330	11.687	11.355	11.799	11.787	11.715	11.592	11.602		
Na2O	1.257	1.392	1.601	1.295	1.331	1.201	1.298	1.316		
K2O	1.917	1.839	1.864	1.838	1.665	1.763	1.690	1.668		
Total	95.483	97.777	102.474	96.527	96.333	96.161	96.954	96.413		
Si	6.309	6.364	6.232	6.243	6.368	6.256	6.352	6.373		
AI (IV)	1.691	1.636	1.768	1.757	1.632	1.744	1.648	1.627		
AI (VI)	0.55	0.425	0.598	0.384	0.35	0.408	0.434	0.445		
T AI	2.241	2.061	2.366	2.141	1.982	2.152	2.082	2.072		
Fe(iii)	0.216	0.297	0.507	0.299	0.393	0.466	0.511	0.412		
Ti	0.241	0.224	0.244	0.25	0.192	0.194	0.149	0.17		
Cr	0	0.004	0.005	0.015	0.006	0.001	0.006	0.005		
Fe(ii)	1.616	1.491	1.16	1.588	1.38	1.402	1.334	1.393		
Mn	0.029	0.022	0.019	0.02	0.022	0.027	0.022	0.013		
Mg	2.348	2.537	2.467	2.444	2.657	2.501	2.544	2.562		
Са	1.85	1.857	1.702	1.912	1.896	1.894	1.851	1.862		
Na	0.371	0.4	0.434	0.38	0.387	0.351	0.375	0.382		
K	0.373	0.348	0.333	0.355	0.319	0.339	0.321	0.319		

Ca (B)	1.85	1.857	1.702	1.912	1.896	1.894	1.851	1.862
Na (B)	0.15	0.143	0.298	0.088	0.104	0.106	0.149	0.138
Na (A)	0.221	0.257	0.136	0.292	0.283	0.246	0.226	0.244
K (A)	0.373	0.348	0.333	0.355	0.319	0.339	0.321	0.319

Resultados das análises de química mineral em cristais de K-feldspato no ortognaisse (IV-RM-7B).

Amostra	IV-RM-7B	IV-RM-7B	IV-RM-7B	
Grão	1	1	1	
Posição	c1-1	c1-2	c1-3	
	k-	k-	k-	
Mineral	feldspato	feldspato	feldspato	
SiO2	65.604	66.282	65.422	
TiO	0.05	0.014	0.017	
AI2O3	18.487	18.713	18.423	
FeO	0	0.098	0.022	
CaO	0.027	0.031	0.047	
Na2O	0.699	0.716	0.641	
K2O	16.519	16.398	16.356	
BaO	0.594	0.5	0.549	
SrO	0.064	0	0.044	
total	102.04	102.75	101.48	
Si	11.95	11.974	11.98	
TiO	0.01	0.002	0	
AI	3.97	3.986	3.98	
Fe	0	0.015	0	
Са	0.01	0.006	0.01	
Na	0.25	0.251	0.23	
K	3.84	3.779	3.82	
Ba	0.04	0.035	0.04	
SrO	0.04	0.035	0.04	