Capítulo 8

Conclusões

Ocorrência de óleo em Lauro Müller

O óleo encontrado na área da Carbonífera Catarinense possui δ^{13} C em torno de -24 $^{0}/_{00}$ e feições moleculares típicas de ambientes anóxicos hipersalinos como razão pristano/fitano menor que 1, presença dos isoprenóides iC_{25} e iC_{30} , de β -carotano, do terpano tetracíclico C_{24} e de gamacerano, apresentando, portanto, boa correlação com o Membro Assistência da Formação Irati.

Apesar dos elevados valores de carbono orgânico, as camadas de carvão da região apresentaram baixos valores de índice de hidrogênio (menor que 100 mg HC/g COT), possuindo, portanto, potencial apenas para a geração de gás. Além disso, possuem características moleculares distintas das observadas no óleo, tais como razão pristano/fitano maior que 1, ausência dos isoprenóides iC_{25} e iC_{30} e de gamacerano e valores mais elevados das razões C₂₉ hopano/C₃₀ hopano e Tm/C₃₀ hopano. Também foram observadas diferenças significativas quanto à distribuição dos aromáticos. As amostras de óleo apresentaram razão 9-/1-metilfenantreno maior que 1, uma feição típica de ambientes marinhos. Os carvões, por outro lado, apresentaram razão 9-/1-metilfenantreno menor que 1 e concentrações mais elevadas de fenantreno, características normalmente associadas à matéria orgânica terrestre. Dessa forma, pode ser refutada qualquer relação genética entre o óleo encontrado em Lauro Müller e as camadas de carvão da região.

A maioria das amostras analisadas foi afetada por biodegradação, apresentando um leve enriquecimento em ¹³C e depleção em alcanos normais e isoprenóides. Contudo, os hopanos e esteranos aparentemente não foram afetados, caracterizando um estágio de biodegradação leve a moderada, segundo a escala de Peters & Moldowan (1993). Os hidrocarbonetos aromáticos também foram atingidos, ocorrendo degradação parcial a total do fenantreno e dos alquil-fenantrenos em cinco das nove amostras. Os esteróides triaromáticos C_{26} - C_{28} , por outro lado, foram observados em todas as amostras, mostrando-se particularmente resistentes à biodegradação.

Os valores de reflectância da vitrinita equivalente obtidos a partir da razão esteranos $C_{29} \alpha \alpha \alpha 20S/(20R + 20S)$ e do MPI 1 variaram de 1,0 a 1,16% e 0,88 a 0,99%

respectivamente, indicando que o óleo foi expulso da rocha geradora, no mínimo, durante o pico de geração de hidrocarbonetos.

O sistema petrolífero Irati-Rio Bonito no sul catarinense

A maturação dos intervalos geradores da Fm. Irati se deu pelo efeito térmico das intrusões ígneas do Cretáceo inferior, as quais possuem ampla distribuição dentro da área de estudo.

A migração dos hidrocarbonetos deve ter ocorrido através do contato direto da geradora com o reservatório através de falhas com rejeitos superiores a 150 m, capazes de posicionar a Fm. Irati ao menos no mesmo nível estrutural dos arenitos da Fm. Rio Bonito. Após a expulsão dos intervalos geradores da Fm. Irati, o óleo deve ter migrado lateralmente no sentido da borda da bacia, aproveitando o mergulho regional NE-SW das camadas sedimentares.

É provável que o óleo tenha sido trapeado estratigraficamente, dentro de níveis porosos dos arenitos das formações Rio Bonito e Palermo. Porém, uma componente estrutural não pode ser descartada. Os perfis geológicos realizados mostraram que a presença de falhas antitéticas, é capaz de posicionar os siltitos e folhelhos da Fm. Palermo no mesmo nível estrutural da Fm. Rio Bonito, constituindo uma barreira à migração lateral dos hidrocarbonetos no sentido da borda da bacia.

Efeito térmico das intrusivas na matéria orgânica

As duas intrusivas básicas presentes no poço CAT 204 senilizaram por completo os intervalos ricos em matéria orgânica do Membro Assistência, reduzindo o pico S2 a valores próximos de zero. O halo térmico abaixo da soleira 2 se estendeu pelo menos até a base da Fm. Irati, situada a 30 m ou 1,41 vezes a espessura do corpo intrusivo, enquanto a espessura da zona senil foi algo em torno de 26 m ou 1,22 vezes a espessura da intrusiva.

Foi observado um aumento significativo nos valores de δ^{13} C em direção aos contatos entre intrusivas e encaixantes. Valores extremos, em torno de -15 $^{0}/_{00}$, foram observados próximo aos contatos superior e inferior com a soleira 2 (mais espessa).

O fato da porção inferior da Fm. Palermo no poço CAT 204 e das três camadas de carvão também se encontrarem maturas sugere que a região carbonífera do sul catarinense deve ter sido submetida a um aquecimento anômalo, causado pela grande incidência de intrusivas ígneas, sendo esse um fator primordial para a atuação do sistema petrolífero permiano na região.

Comparação entre o óleo de Lauro Müller (SC) e os arenitos asfálticos de Anhembi (SP)

A amostra do arenito asfáltico de Anhembi (SP) encontra-se intensamente biodegradada, apresentando a completa degradação dos alcanos normais e isoprenóides além da presença de 25-norhopanos. Os óleos das duas localidades apresentam valores similares de δ^{13} C (em torno de -23 $^{0}/_{00}$). Contudo, o avançado estágio de biodegradação do arenito asfáltico acarretou um ligeiro enriquecimento em 13 C em relação ao óleo de Lauro Müller.

Apesar de em ambas as localidades a geração de hidrocarbonetos ter ocorrido pelo efeito térmico de intrusões ígneas, as razões moleculares sugerem que o arenito asfáltico de Anhembi é termicamente menos evoluído que o óleo de Lauro Müller. Essa diferença de maturação pode ser explicada pelo fato de no sul catarinense a maturação dos intervalos geradores da Fm. Irati ter ocorrido pela intrusão de soleiras, com espessura média em torno de 14 m, enquanto na região de Anhembi, as ocorrências de arenito asfáltico estão intimamente associadas à presença de diques, corpos intrusivos geralmente menos espessos que as soleiras.

O óleo encontrado em Lauro Müller e os arenitos asfálticos de Anhembi apresentaram algumas diferenças moleculares relacionadas à variação faciológica da Fm. Irati dentro da Bacia do Paraná. No estado de São Paulo, a deposição da Formação Irati se processou em condições mais óxicas e com maior contribuição de matéria orgânica continental em relação ao sul de Santa Catarina. Em conseqüência disso, as seguintes características moleculares foram observadas na amostra de arenito asfáltico: razão homohopano C_{34}/C_{33} maior que 1, razão diasteranos/esteranos mais elevada e maiores concentrações de Tm, terpano tetracíclico C_{24} e terpanos tricíclicos C_{19} e C_{20} em relação ao óleo de Lauro Müller.

Capítulo 9

Referências Bibliográficas

ALFERES, C.L.F. (2007) - A Geoquímica orgânica da Formação Irati na área de São Mateus do Sul, Paraná. Dissertação de Mestrado, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, 99 p.

AQUINO NETO, F.R.; TRIGUIS, J.; AZEVEDO, D.A.; RODRIGUES, R.; SIMONEIT, B.R.T. (1992) - Organic geochemistry of geographically unrelated *Tasmanites*. *Organic Geochemistry*, v.18, p. 791–803.

ARAÚJO, C.C.; YAMAMOTO, J.K.; ROSTIROLLA, S.P. (2006) – Arenitos asfálticos na Bacia do Paraná: estudo das ocorrências no Alto Estrutural de Anhembi. Boletim de Geociências da Petrobras, v. 14, n. 1, p. 47-70.

ARAÚJO, L.M.; TRIGÜIS, J.A.; CERQUEIRA, J.R.; FREITAS, L.C.S. (2000) – *The atypical permian petroleum system of the Paraná Basin, Brazil.* In: Petroleum systems of South Atlantic margins. AAPG Memoir n. 73, p. 377-402.

ARTUR, P.C.; SOARES, PC (2002) – Paleoestruturas e petróleo na Bacia do Paraná, Brasil. Revista Brasileira de Geociências, v. 32, n. 4, p. 433-438.

BRAY, E.E.; EVANS, E.D. (1961) - Distribution of n-parafins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, v. 22, p. 2 -15.

BUDZINSKI, H.; GARRIGUES, P.; CONNAN, J.; DEVILLERS, J.; DOMINE, D.; RADKE, M.; OUDIN, J.L. (1995) - *Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts.* Geochimica et Cosmochimica Acta, Vol. 59, No. 10, pp. 2043-2056.

CAETANO-CHANG, M.R. & WU, F. T. (2003) – Diagênese de arenitos da Formação Pirambóia no centro-leste paulista. Geociências, v. 22, pp. 33-39, UNESP, Rio Claro, São Paulo.

CAYE, B.R.; POZZA, E.V.; FABRÍCIO, J.A.C.; SÜFFERT, T. (1975) – Projeto Carvão no Pré-Barro Branco. 5 v. Convênio DNPM/CPRM. Porto Alegre.

CHANG, H.K.; KOWSMANN, R.O.; BENDER, A.A.; MELLO, U.T. (1990) – Origem e evolução termomecânica de bacias sedimentares. In: Raja Gabaglia, G.P. & Milani, E.J. (Eds). Origem e evolução das bacias sedimentares. Petrobras/SEREC/CEM-SUD, p. 49-71.

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS – Folha SH 22 – Porto Alegre, escala 1:1.000.000. Endereço: <u>www.cprm.gov.br</u>, acessado em 14/02/2009.

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS (2000) - Programa Levantamentos Geológicos Básicos do Brasil. Criciúma, Folha SH.22-X-B. Estado de Santa Catarina. Escala 1:250.000. Organizado por Marco Aurélio Schneiders da Silva e Sérgio Reali Leites.

CONCEIÇÃO, J.C.J.; ZALÁN, P.V.; DAYAN, H. (1993) – Deformações em rochas sedimentares induzidas por rochas magmáticas: classificação e mecanismos de intrusão. Boletim de Geociências da Petrobras, v. 7, n. 1, p. 57-91.

CORDANI, U.G.; NEVES, B.B.B.; FUCK, R.A.; PORTO, R.; THOMAZ FILHO, A.; CUNHA, F.M.B. (1984) - *Estudo preliminar de integração do Pré-Cambriano com os eventos tectônicos das bacias sedimentares brasileiras*. PETROBRAS-CENPES-SINTEP, Série Ciência-Técnica-Petróleo n. 15, 70 p.

CORRÊA, L.M.S.A. (2007) – Avaliação do efeito térmico das soleiras de diabásio nas rochas geradoras da Formação Irati (Bacia do Paraná, Brasil) através de técnicas de modelagem numérica. Dissertação de Mestrado. Faculdade de Geologia, UERJ. 96p.

CORRÊA, L.M.S.A.; PEREIRA, E. (2005) – Estudo da distribuição das intrusões mesozóicas e sua relação com os sistemas petrolíferos da Bacia do Paraná. In: III Simpósio de Vulcanismo e ambientes associados. Cabo Frio. Anais, v. 1, p. 21-26.

DAEMON, R.F.; QUADROS, L.P. (1970) - *Bioestratigrafia do Neopaleozóico da Bacia do Paraná*. Anais do 24° Congresso Brasileiro de Geologia, Sociedade Brasileira de Geologia, p. 359-412.

DZOU, L.I.P., NOBLE, R.A., SENFTLE, J.T. (1995) - Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Organic Geochemistry, v. 23, p. 681–697.

EIRAS, J.F.; WANDERLEY FILHO, J.R. (2002) - Sistemas Petrolíferos ígneos sedimentares. 2° Congresso Brasileiro de P&D em Petróleo & Gás. Associação Brasileira de P&D em petróleo e gás.

ESPITALIÉ, J.; LAPORTE, J.L.; MADEC, M.; MARQUIS, F.; LEPLAT, P.; PAULET, J.; BOUTEFEU, A. (1977) - Méthode rapide de caractérisation des roches mères, de leur potential pétrolier et de leur degré d'évolution. Revue de l'Institut Français du Pétrole, v. 32, p. 23–42. ESPITALIÉ, J.; DEROO, G.; MARQUIS, F. (1985) - La pyrolyse Rock-Eval et ses applications - première/deuxième partie. Revue de l'Institut Français du Pétrole, v. 40, n. 5-6, p. 563-579.

FARRIMOND, P.; TAYLOR, A.; TELNAES, N. (1998) – *Biomarker maturity parameters: the role of generation and thermal degradation*. Organic Geochemistry v. 29, n. 57, p.1181-1197.

GALUSHKIN, Y.I. (1997) - Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism of intrusion. Organic Geochemistry, v. 26, n. 11-12, p. 645-658.

GOMES, A.J.P.; CRUZ, P.R.; BORGES, L.P. (2003) - *Recursos Minerais Energéticos: Carvão e Urânio.* In: Geologia, Tectônica e Recursos Minerais do BrasilL. A. Bizzi, C. Schobbenhaus, R. M. Vidotti e J. H. Gonçalves (eds.), CPRM, Brasília.

GRANTHAM, P.J.; WAKEFIELD, L.L. (1988) – Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, v. 12, p. 61-73.

GREENWOOD, P.F.; AROURI, K.R.; GEORGE, S.C. (2000) - *Tricyclic terpenoid* composition of Tasmanites kerogen as determined by pyrolysis GC-MS. Geochimica et Cosmochimica Acta, v. 64, n. 7, p. 1249–1263.

TEN HAVEN, H.L.; DE LEEUW, J.W.; PEAKMAN, T.M.; MAXWELL, J.R. (1986) – *Anomalies in steroid and hopanoid maturity indices*. Geochimica et Cosmochimica Acta, v. 50, p. 853-855.

TEN HAVEN, H.L.; ROHMER, M.; RULLKÖTTER, J.; BISSERET, P. (1989) - *Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments.* Geochimica et Cosmochimica Acta, v.53, p. 3073-3079.

HENZ, G.I.; RODRIGUES, R.; FORMOSO, M.L.L. (1987) – Organo-geoquímica dos carvões da jazida do Faxinal, município de Arroio dos Ratos, RS. Geochimica Brasiliensis, v. 1, n. 2, p. 161-175.

HUANG, W.Y.; MEISCHEIN, W.G. (1979) - *Sterols as ecological indicators*. Geochimica et Cosmochimica Acta, v. 43, p. 739–745.

HUGHES, W.B.; HOLBA, T.A.G.; DZOU, L.I.P. (1995) - *The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks*. Geochimica et Cosmochimica Acta, v. 59, n. 17, p. 3581-3598.

HUNT, J.M. (1996) – *Petroleum Geochemistry and Geology*. San Francisco: W.H. Freeman and company.

JARVIE, D.M. (1991) – *Total Organic Carbon (TOC) analysis*. In: Source and migration processes and evaluation techniques (K., Merril, ed.). AAPG, p. 113-118.

KOOPMANS, M.P.; RIJPSTRA, W.I.C.; KLAPWIJK, M.M.; DE LEEUW, J.W.; LEWAN, M.D.; JAAP S. SINNINGHE DAMSTÉ, J.S. (1999) - A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter. Organic Geochemistry, v. 30, p.1089-1104.

LISBOA, A.C. (2006) – Caracterização geoquímica orgânica dos folhelhos neopermianos da Formação Irati – borda leste da Bacia do Paraná, São Paulo. Dissertação de Mestrado. COPPE, UFRJ, 171 p.

MACKENZIE, A.S.; PATIENCE, R.L.; MAXWELL, J.R.; VANDENBROUCKE, M.; DURAND, B. (1980) – *Molecular parameters of maturation in the Toarcian shales, Paris Basin, France I. Changes I the configuration of acyclic isoprenoid alkanes, steranes and triterpanes.* Geochimica et Cosmochimica Acta, v. 44, p. 1709-1721.

MACKENZIE, A.S.; BRASSEL, S.C.; EGLINTON, G.; MAXWELL, J.R. (1982) – *Chemical fossils: the geological fate of steroids*. Nature 217, p. 491-504.

MAGOON, L.B.; DOW, W.G. (1994) – The petroleum system. AAPG Memoir, n.60, p. 3-24.

MELLO, M.R.; KOUTSOUKOS, E.A.M; SANTOS NETO, E.V.; TELLES JR, A.C.S. (1993) - Geochemical and micropaleontological characterization of lacustrine and marine hypersaline environments from Brazilian sedimentary basins. In: Source rocks in sequence stratigraphic framework. AAPG Studies in Geology 37, p. 17-34.

MILANI, E.J. (1997) - Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gondwana sul-ocidental. Tese de Doutorado 255 p. Instituto de Geociências, UFRGS, Porto Alegre.

MILANI, E.J.; RAMOS, V.A (1998) – Orogenias paleozóicas no domínio sulocidental do Gondwana e os ciclos de subsidência da Bacia do Paraná. Revista Brasileira de Geociências, v. 28, n. 4, p. 473-484.

MILANI, E.J.; KINOSHITA, E.M.; ARAÚJO, L.M.; CUNHA, P.R.C. (1990) - Bacia do Paraná: possibilidades petrolíferas da Calha Central. Boletim de Geociências da Petrobras, v. 4, p. 21-34.

MILANI, E.J.; FRANÇA, A.B.; MEDEIROS, R.A. (in memoriam) 2007 – Rochas geradoras e rochas-reservatório da Bacia do Paraná, faixa oriental de afloramentos, Estado

do Paraná. Roteiros Geológicos, Boletim de Geociências da Petrobras, v. 15, n. 1, p. 135-162.

PALMER, S.E. (1991) – *Effect of biodegradation and water washing on crude oil composition*. In Source and Migration Process and Evaluation Techniques (Ed. by K. Merrill). AAPG, Tulsa, Oklahoma.

PEATE, D.W. (1997) - *The Paraná–Etendeka Province*. In: Mahoney, J.J., Coffin,
M.F. (Eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism,
American Geophysical Union, Geophysical Monograph, v. 100, p. 217–245.

PETERS, K.E. (1986) - *Guidelines for evaluating petroleum source rocks using programmed pyrolysis*. AAPG Bulletin, v. 70, p. 318–329.

PETERS, K.E.; ROHRBACK, B.G.; KAPLAN, I.R. (1981) – Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation. AAPG Bulletin, v. 65, p. 501-508.

PETERS, K.E.; MOLDOWAN, J.M. (1993) - The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, 363 p.

PHILP, R.P. (1985) – *Biological markers in fossil fuel production*. Mass Spectrometry Reviews, v. 4, n. 1, p. 1-54.

PREMAOR E.; FISCHER, T.V.; SOUZA, P.A. (2006) – Palinologia da Formação Irati (Permiano Inferior) da Bacia do Paraná, em Montividiu, Goiás, Brasil. Revista del Museo Argentino de Ciencias Naturales, n.s.8 (2), p. 221-230, Buenos Aires.

RADKE, M. (1987) - Organic geochemistry of aromatic hydrocarbons. In: Advances in Petroleum Geochemistry, p. 141-207. Academic Press, London.

RADKE, M.; WELTE, D.H. (1983) - *The Methylphenanthrene Index (MPI): a maturity parameter based on aromatics hydrocarbons*. In: Advances in Organic Geochemistry 1981, p. 504 - 512.

RAYMOND, A.C.; MURCHISON, D.G. (1991) – The relationship between organic maturation, the widths of thermal aureoles and the thicknesses of sills in the Midland Valley of Scotland and Northern England. Journal of the Geological Society, v. 148, p. 215-218, London.

RENNE, P.R.; ERNESTO, M.; PACCA, I.G.; COE, R.S.; GLEN, J.M.; PRÉVOT, M.; PERRIN, M. (1992) – Age of Paraná Flood Volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Science, v. 258, n. 5084, p. 975-979. REQUEJO, A.G. (1992) – *Quantitative analysis of triterpane and sterane biomarkers: methodology and applications in molecular studies.* In: Biological markers in sediments and petroleum (J.M. Moldowan, P. albrecht, R.P. Philp, eds.), p. 223-240. Prentice Hall.

RODRIGUES, R. (1995) – A geoquímica orgânica na Bacia do Parnaíba. Tese de Doutorado 225 p. Instituto de Geociências, UFRGS, Porto Alegre.

RODRIGUES, R. (2004) – *Fósseis químicos*. In: Paleontologia (I.S. Carvalho, ed.). V. 1, cap. 13, p. 207-219. Editora Interciência, Rio de Janeiro.

RODRIGUES, R.; TAKAKI, T. (1987) - O Cretáceo Inferior nas bacias sedimentares da costa sudeste do Brasil: análise isotópica e suas implicações paleoambientais. Revista Brasileira de Geociências, São Paulo, v. 17, n.2, p. 177-179.

ROSTIROLLA, S.P.; ASSINE, M.L.; FERNANDES, L.A.; ARTUR, P.C. (2000) – *Reativação de paleolineamentos durante a evolução da Bacia do Paraná – o exemplo do alto estrutural de Quatiguá*. Revista Brasileira de Geociências, v. 30, n. 4, p.639-648.

ROSTIROLLA, S.P.; MANCINI, F.; RIGOTI, A.; KRAFT, R.P. (2003) - Structural styles of the intracratonic reactivation of the Perimbó fault zone, Paraná basin, Brazil. Journal of South American Earth Sciences, v. 16, p. 287–300.

SANTOS, R.V.; SOUZA, P.A.; ALVARENGA, C.J.S.; DANTES, E.L.; PIMENTEL, M.M.; OLIVEIRA, C.G.; ARAÚJO, L.M. (2006) – Shrimp U–Pb zircon dating and palynology of bentonitic layers from the Permian Irati Formation, Paraná Basin, Brazil. Gondwana Research, n. 9, p. 456-473.

SANTOS NETO, E.V.; CERQUEIRA, J.R. (2005) – Carbon and hydrogen isotopic variations in specific compounds of the Irati Formation: reconstruction of a Permian sea environment in Southern Brazil. In: Organic Geochemistry: Challenges for the 21st Century, vol. 2. 22nd International Meeting on Organic Geochemistry, Espanha.

SCHNEIDER, R.L. (1980) – Prospectividade petrolífera da Bacia do Paraná. In:
Mesa Redonda: Geologia e potencialidade da Bacia do Paraná no estado de São Paulo, p. 5862. SBG/SP. Publicação especial, São Paulo.

da SILVA, J.D. (2006) – *Estratigrafia química e potencial gerador da Formação Palermo (Bacia do Paraná), na área nordeste do estado do Paraná.* Dissertação de Mestrado. Faculdade de Geologia, UERJ. 88p.

SILVA, M.B.; KALKREUTH, W. (2005) - Petrological and geochemical characterization of Candiota coal seams, Brazil — Implication for coal facies interpretations and coal rank. International Journal of Coal Geology, v. 64, p. 217–238.

SILVERMAN, S.R.; EPSTEIN, (1958) – Carbon isotopic composition of petroleum and other sedimentary organic materials. AAPG Bulletin, v. 42, p. 998-1012.

SINNINGHE DAMSTÉ, J.S; KENIG, F.; KOOPMANS, M.P.; KÖSTER, J.; SCHOUTEN, S.; HAYES, J.M.; DE LEEW, J.W. (1995) – *Evidence for gammacerane as an indicator of water column stratification*. Geochimica et Cosmochimica Acta, v. 59, n. 9, p. 1895-1900.

SOFER, Z. (1984) - Stable carbon isotope composition of crude oils: application to source depositional environments and petroleum alteration. AAPG Bulletin, v. 68, n. 1, p. 31–49.

SOFER, Z.; REGAN, D.R.; MULLER, D.S. (1993) - Sterane isomerization ratios of oils as maturity indicators and their use as an exploration tool, Neuquen Basin, Argentina. Congreso Geológico Argentino. Actas 1, p. 407-411.

SOLDAN, A.L.; SANTOS NETO, E.V.; CERQUEIRA, J.R; MARTINEZ, C.F.J.; CASTELLO, B.V.A.; ARAI, M. (1988) – *Hidropirólise: Uma nova ferramenta para o estudo do processo de maturação*. Boletim de Geociências da Petrobras, v. 2, n. 1, p. 65-76.

SOUZA, I.V.A.F.; MENDONÇA FILHO, J.G., MENEZES, T.R. (2004) – Avaliação da influência térmica das intrusivas ígneas no principal horizonte potencialmente gerador da Bacia do Paraná: Formação Irati. Anais do 3º Congresso Brasileiro de P&D em Petróleo e Gás. IBP.

THOMAZ FILHO, A. (1982) - Ocorrência de arenito betuminoso em Anhembi (SP) cubagem e condicionamento geológico. Anais do 32º Congresso Brasileiro de Geologia. Sociedade Brasileira de Geologia, v. 5, p. 2344-2348.

TISSOT, B.P.; WELTE, D.H. (1978) - Petroleum Formation and Occurrence. 1° edition. Berlin, Springer-Verlag, 538 p.

TRIGÜIS, J.A. (1988) – *Caracterização geoquímica da Formação Palermo, Bacia do Paraná*. Boletim de Geociências da Petrobras, v. 2, n.2, p. 121-131.

TURNER, S. P.; REGELOUS, M.; KELLEY, S.; HAWKESWORTH, C.J.; MANTOVANI, M.S.M. (1994) - *Magmatism and continental break-up in the South Atlantic: high precision* ⁴⁰Ar-³⁹Ar geochronology. Earth and Planetary Science Letters, 121, p. 333-348.

VITORELLO, I.; PADILHA, A.L. (2000) – *Mapping of high electrical conductivity on the Torres syncline hinge, southeastern Paraná Basin.* Revista Brasileira de Geociências, v. 30, n. 3, p. 535-537. WAPLES, D.W.; HAUG, P; WELTE, D.H. (1974) - Occurrence of a regular C_{25} isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal-type, saline environment. Geochimica et Cosmochimica Acta, v. 38, p. 381-387.

WAPLES, D. W.; MACHIARA, T. (1991) - *Biomarkers for geologists – A practical* guide to the application os steranes and triterpanes in petroleum geology. American Association of Petroleum Geologists Bulletin, AAPG Methods in Exploration, n.9, 91p.

WHITE, I.C. (1908) – *Relatório sobre as coal measures e rochas associadas ao sul do Brasil.* Rio de Janeiro: Comissão das Minas de Carvão de Pedra do Brasil, 300 p.

ZALÁN, P.V.; WOLF, S.; CONCEIÇÃO, J.C.J.; MARQUES, A.; ASTOLFI, M.A.M.; VIEIRA, I.S.; APPI, V.T.; ZANOTTO, O.A. (1990) – *Bacia do Paraná*. In: Raja Gabaglia, G.P. & Milani, E.J. (Eds). Origem e evolução das bacias sedimentares. Petrobras/SEREC/CEM-SUD, p. 135-168.

ZHANG, S.; HUANG, H.; XIAO, Z.; LIANG, D. (2005) - *Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 2: Maturity assessment.* Organic Geochemistry, v. 36, p. 1215–1225.

Anexos

Росо		lat Ion		Cota da lapa da camada	Espessura de intrusivas na
	- 3 -		_	Bonito (m)	Fm. Irati (m)
	5 BG-01A-SC	6855920	652510	185,90	-
	5 BG-02-SC	6857000	651500	144,21	0
	5 BG-04-SC	6856055	650400	133,54	8,5
	5 BG-05-SC	6855000	652495	210,37	-
	5 BG-06-SC	6854965	651565	198,33	-
	5 BG-07-SC	6855000	650500	192,73	0
	5 BG-08-SC	6854000	653000	215,10	-
	5 BG-09-SC	6854000	651500	211,36	-
	5 BG-10-SC	6853975	650530	200,77	10
	5 BG-11-SC	6854025	649510	178,52	13
	5 BG-12-SC	6854125	648570	102,07	3,5
	5 BG-13-SC	6853000	654525	224,23	-
	5 BG-14-SC	6853000	653495	212,20	0
	5 BG-15-SC	6852975	652530	165,40	0
	5 BG-16-SC	6853000	651500	204,20	4,35
	5 BG-17-SC	6852970	650490	205,10	9,5
	5 BG-18-SC	6853000	650000	186,02	5
	5 BG-19-SC	6855030	649525	194,02	7,5
	5 BG-20-SC	6855000	648500	179,59	4
	5 BG-21-SC	6852000	654500	217,19	-
	5 BG-22-SC	6849020	652515	168,84	-
	5 BG-23-SC	6852220	652590	184,36	8,5
	5 BG-24-SC	6851980	651500	184,68	7,5
	5 BG-25-SC	6850015	649470	54,51	-
	5 BG-26-SC	6852000	649480	59,05	11
	5 BG-27-SC	6852000	648500	7,50	10,5
	5 BG-28-SC	6851810	647465	55,97	6,5
	5 BG-29-SC	6850960	652500	189,60	-
	5 BG-30-SC	6851015	651515	184,18	-
	5 BG-31-SC	6851000	650500	154,89	0
	5 BG-33-SC	6850990	648505	7,42	10
	5 BG-34-SC	6850965	647495	75,30	0
	5 BG-35-SC	6850000	651500	174,00	-
	5 BG-36-SC	6850010	650490	151,51	-
	5 BG-37-SC	6850030	648475	-6,67	3,5
	5 BG-38-SC	6848930	651500	142,60	-
	5 BG-39-SC	6849000	650960	123,65	-
	5 BG-40-SC	6849025	649500	31,98	3
	5-BG-41-SC	6849000	648500	-	4
	5 BG-42-SC	6848000	651020	149,70	-
	5 BG-44-SC	6848000	648530	-40,87	3,5
	5 BG-45-SC	6847025	651000	129,27	-
	5 BG-46-SC	6846985	648465	-25,18	0
	5 BG-47-SC	6846000	651000	69,63	-
	5 BG-48-SC	6846000	649500	-38,07	0
	5 BG-49-SC	6846000	647500	0,74	0
	5 BG-50B-SC	6845000	649500	66,31	-

Anexo 1 - Dados dos poços do convênio DNPM/CPRM e da Carbonífera Catarinense

utilizados na realização dos mapas

5 BG-51-SC	6845000	648500	-42,86	0
5 BG-52-SC	6845000	646500	74,25	0
5BG-53-SC	6843990	649000	-81,15	0
5 BG-54-SC	6844030	648020	-90.84	0
5 BG-55-SC	6849990	659000	220.31	-
5 BC 56 SC	6846000	658000	177.70	
5 BC 57 SC	6944015	658060	102.01	-
5 BG-57-5C	6965000	652000	192,01	-
5 BG-58-SC	0805990	053000	274,24	-
5 BG-59-SC	6863000	652990	228,50	-
5 BG-60-SC	6863000	651990	242,30	-
5 BG-61-SC	6862965	651000	274,25	-
5 BG-62-SC	6864000	654000	224,20	-
5 BG-63-SC	6864000	653000	225,61	-
5 BG-64-SC	6864000	652000	250,90	-
5 BG-65-SC	6863995	651000	246,90	-
5 BG-66-SC	6865000	654000	243,10	-
5 BG-67-SC	6865000	653010	238,51	-
5 BG-68-SC	6864985	652000	257.93	-
5 BG-69-SC	6865000	650960	245 40	-
5 BG-70-SC	6865920	654070	240.23	_
5 BG 71 SC	6866000	652000	176 11	11
5 BC 72 SC	6966000	651000	196.02	20
5 BG-72-3C	0000000	051000	100,23	20
5 BG-73-SC	6867000	651000	1/1,2/	16
5 BG-124-SC	6845020	650980	86,96	-
5 BG-125-SC	6847010	649490	-12,07	0
5 BG-126-SC	6848000	650000	75,03	-
5 BR-06-SC	6845650	649150	-32,37	-
5 BR-07-SC	6850080	650280	165,88	-
5 BR-08-SC	6854495	652000	202,60	-
5 BR-09-SC	6845570	659040	183,60	-
5 BR-10-SC	6855280	653520	219,40	-
5 BR-11-SC	6866460	649990	184,70	31.5
AM-01-SC	6845000	657500	171,61	29.37
AM-02-SC	6844000	657600	154.80	0
AM-03-SC	6847000	658500	170.22	-
AM-04-SC	6846500	658500	188 17	
AM 05 SC	6846000	659500	200.00	_
AN 06 SC	6945500	659300	200,99	-
AIVI-00-5C	004000	650000	100,17	-
AIVI-07-SC	0845000	058000	174,30	0
AM-08-SC	6844500	658400	1/2,6/	-
AM-09-SC	6845000	658400	165,33	-
AM-10-SC	6845000	659000	195,17	-
AM-11-SC	6846500	658000	182,70	-
AM-12-SC	6847000	659000	214,68	-
AM-14-SC	6846500	659000	201,21	-
AM-15-SC	6846000	658800	106.62	-
AM-16-SC		000000	190,03	
AM-18-SC	6847000	659500	216,22	-
	6847000 6847000	659500 660500	216,22 40,00	-
AM-19-SC	6847000 6847000 6846500	659500 660500 659500	216,22 40,00 212,96	
AM-19-SC AM-20-SC	6847000 6847000 6846500 6845500	659500 660500 659500 657500	216,22 40,00 212,96 157,72	- - - 0
AM-19-SC AM-20-SC AM-21-SC	6847000 6847000 6846500 6845500 6845500	659500 660500 659500 657500 657900	216,22 40,00 212,96 157,72 -21,90	- - - 0 2.8
AM-19-SC AM-20-SC AM-21-SC	6847000 6847000 6846500 6845500 6845500 6845000	659500 660500 659500 657500 657900 657900	190,03 216,22 40,00 212,96 157,72 -21,90 187,21	- - - 0 2,8
AM-19-SC AM-20-SC AM-21-SC AM-22-SC	6847000 6847000 6846500 6845500 6845500 6845000 6846000	659500 660500 659500 657500 657900 659500 659500	190,03 216,22 40,00 212,96 157,72 -21,90 187,21 200,20	- - 0 2,8 -
AM-19-SC AM-20-SC AM-21-SC AM-22-SC AM-23-SC	6847000 6847000 6846500 6845500 6845500 6845000 6846000 6846000	659500 660500 659500 657500 657900 659500 659750 657190	190,03 216,22 40,00 212,96 157,72 -21,90 187,21 209,29	- - 0 2,8 - -
AM-19-SC AM-20-SC AM-21-SC AM-22-SC AM-23-SC AM-17-SC	6847000 6847000 6846500 6845500 6845500 6845000 6846000 6844550	659500 660500 659500 657500 657900 659500 659750 657180	190,03 216,22 40,00 212,96 157,72 -21,90 187,21 209,29 -147,39	- - 0 2,8 - - 1,8
AM-19-SC AM-20-SC AM-21-SC AM-22-SC AM-23-SC AM-17-SC PB-01-SC	6847000 6847000 6846500 6845500 6845500 6845000 6846000 6844550 6825000	659500 669500 659500 657500 657900 659500 659750 657180 662500	190,03 216,22 40,00 212,96 157,72 -21,90 187,21 209,29 -147,39 5,33	- - 0 2,8 - - 1,8 -
AM-19-SC AM-20-SC AM-21-SC AM-22-SC AM-23-SC AM-17-SC PB-01-SC PB-05-SC	6847000 6847000 6846500 6845500 6845500 6845000 6846000 6844550 6825000 6832015	659500 669500 659500 657500 657900 659500 659750 657180 662500 661130	190,03 216,22 40,00 212,96 157,72 -21,90 187,21 209,29 -147,39 5,33 90,80	- - 0 2,8 - - 1,8 - -
AM-19-SC AM-20-SC AM-21-SC AM-22-SC AM-23-SC AM-17-SC PB-01-SC PB-05-SC PB-06-SC	6847000 6847000 6846500 6845500 6845500 6845000 6846000 6844550 6825000 6832015 6838885	659500 669500 659500 657500 657900 659500 659750 657180 662500 661130 660188	190,03 216,22 40,00 212,96 157,72 -21,90 187,21 209,29 -147,39 5,33 90,80 149,93	- - 0 2,8 - - 1,8 - - - -

PB-11-SC	6831980	658583	70,08	-
PB-12-SC	6847200	660000	237,09	-
PB-13-SC	6850050	662000	307.03	-
PB-14-SC	6856530	654325	189.45	-
PB-16-SC	6842800	659010	159.16	_
PB-17-SC	6852500	655000	222.84	_
PB-18-SC	6858050	652070	213 77	_
DB 10 SC	6862080	651/80	263.35	
	6966270	654000	203,35	-
PB-20-30	0000370	6034990	213,07	-
PB-24-50	0827000	003000	8,44	-
PB-34-SC	6840140	654270	109,48	-
PB-36-SC	6851000	649500	40,62	-
PB-39-SC	6866000	652500	244,04	-
PB-40-SC	6854580	647880	125,49	-
PB-41-SC	6861800	645500	99,26	-
PB-43-SC	6847800	652200	142,06	-
PB-44-SC	6847440	648480	-36,46	-
PB-45-SC	6847500	657500	165,40	-
PB-30-SC	6842000	650250	63,80	-
1 CR-17-SC	6847700	655000	180.23	136.8
1 CR-25-SC-01	6851700	651000	179.01	-
1 CR 31-SC-01	6850800	658000	101 76	0
1 CR-41-SC-01	6847600	657000	145.48	0
1 CR 42 SC 01	6857700	646800	08.02	0
1 CR-42-3C-01	6947700	651000	90,92	-
1 CR-43-5C-01	0047700	631000	147,23	-
1 CR-47-SC-01	0001000	040800	124,87	0,3
1 CR-50-SC-01	6862000	649000	189,05	-
1 CR-53-SC-01	6858000	649000	197,2	-
1 CR-54-SC-01	6854000	649000	142,34	8,9
1 CR-55-SC-01	6846000	647000	34,19	0
1-CR-76-SC	6857000	645000	-	4,6
1-CR-27-SC-01	6849700	657000	-	0
1 CR-70-SC	6866300	646500	217,25	9,7
1 CR-71-SC	6865700	648700	194,38	19
1 CR-57-SC	6842000	647000	-76,7	0
1 CR-65-SC	6851000	647000	80,66	8,5
1 CR-73-SC	6861500	644600	101.27	4
1 CR-79-SC	6870300	646500	224,56	22
1 CR-81-SC	6866300	645500	185,39	13.8
1 CR-82-SC	6851500	645250	69.58	6.5
1 CR-33-SC	6850875	654300	148 53	6
1 CR 37-SC-01	6854650	658000	153.04	-
1 CR 44 SC 01	6837200	647200	173.45	-
1 00 64 60	6820000	645000	140.00	25
1 00 50 00	6924000	647000	- 140,00	3,3 12 F
1 CR-59-SC	6834000	647000	-125,00	13,5
1 CR-62-SC	6834000	645000	-107,00	0
1 UR-04-SC	6846800	656000	162,93	0
CAT-42	6857625	649500	206,22	-
CAT-44	6857596	649185	178,48	-
CAT-45	6858811	655555	279,06	-
CAT-46	6859050	655935	282,35	-
CAT 179A	6858150	647650	158,39	-
CAT 111	6858050	647900	158,72	-
CAT Nid	6857630	647880	104,73	-
CAT 110	6858650	648250	187,39	-
CAT 76	6859780	648700	220.50	-
CAT 75	6860650	649350	214.76	-
CAT 74	6860750	649680	231.65	-
				l

CAT 204	6865951	649599	169,85	34,03
CAT 163	6857800	646900	108,42	-
CAT 53	6857650	650500	227,6	-
CAT-78	6857330	648650	155,21	-
CAT 125	6859400	648000	202,12	-
CAT 199	6860180	651250	214,77	-
CAT 196	6861700	655020	262,94	-
CAT 192	6861100	653500	275,3	-
CAT 190	6860800	652500	278,48	-
CAT 99	6858300	653450	257,86	-
CAT 72	6860220	655700	289,93	-
CAT 137	6859850	655050	296,6	-
CAT 104	6858750	652500	219,31	-
CAT 27	6858600	655150	277	-
CAT 88	6859050	653500	275,2	-
G2-92	6858060	650000	240,9	-
RC-01B	6857900	649000	199,63	-
LM - 93	6857000	649000	139	-
AL-04-SC	6831880	659850	79,55	-
AL-05-SC	6831650	658630	68,67	-
AL-01-SC	6832190	658740	80,92	-
AL-02-SC	6832200	659240	82,98	-
AL-03-SC	6832200	659910	94,26	-
AL-06-SC	6831600	659134	73,48	-
AL-07-SC	6831632	659432	72,90	-
AL-08-SC	6832501	659883	76,85	-
AL-09-SC	6831890	659180	74,50	-

Anexo 2 - Dados de carbono orgânico, teor de enxofre, resíduo insolúvel e $\delta^{13}C$ do poço

Prof. (m)	COT%	%S	R.I %	δ ¹³ C (⁰ / ₀₀)
5,80	0,59	0,23	99	-25,41
6,30	0,48	0,86	91	-24,441
6.80	0.37	0.76	97	-23.625
7.30	0.63	0.52	91	-24.319
7.80	0.62	0.22	91	-24.033
8.30	0.06	0.16	94	-24.051
8.80	0.70	0.25	88	-24,178
9.30	0.95	0.12	90	-24.657
9.80	7.85	1.97	89	-23,448
10.30	8.79	4.13	96	-23.682
10.80	7.39	3.95	100	-24,104
11.30	9.50	2.72	87	-24.255
11.80	5.27	2.43	91	-25.266
12.30	4.35	3.13	99	-24.033
12.55	3.82	3.68	90	-23.975
12.80	4.13	2.61	98	-22.822
13.00	10.40	3.84	78	-23.212
25.75	8.51	5.62	95	-21,969
26,25	5.20	4.22	94	-21.021
26.75	7.68	2.55	100	-20.57
27.25	6,18	3.26	97	na
27,75	6.08	2,58	98	-20,154
28 15	5 49	2 50	96	-20 495
28 25	3 54	2 88	97	-20 198
29.25	4.07	4.47	93	-20,452
29.75	2.81	1.20	100	-20,143
30.25	1.10	1.63	91	-18.813
30.75	1.29	5.52	99	-18.292
31.20	1.62	2.99	90	-16.44
31.70	0.09	0.97	56	-15.589
31,90	1,61	2,28	31	-15,271
53.20	0.30	0.72	97	-14.584
54.25	0.08	0.46	95	na
57,30	0,34	0,62	95	-23,879
58,00	1,08	1,74	95	-22,207
58,30	14,70	4,34	97	-20,645
59,30	11,20	5,06	93	-23,322
60,30	19,30	5,05	92	-21,757
61,30	11,60	3,37	77	-19,459
61,35	10,50	5,48	97	-18,969
62,30	7,41	2,85	94	-19,011
63,30	0,96	1,51	57	-18,733
64,30	0,47	0,65	18	-21,45
68,35	0,49	1,18	94	-22,742
68,85	0,61	0,85	95	-23,448
71,70	0,55	1,00	93	-23,043
74,60	0,46	0,72	94	-23,519
80,30	0,41	0,77	94	-23,508

CAT 204

82,80	0,44	0,76	95	-24,66
83,30	0,43	1,21	93	-24,645
155,60	0,88	0,18	84	-23,507
156,10	1,06	0,10	93	-23,464
162,30	1,31	0,19	90	-22,661
162,80	1,46	0,14	90	-22,212
164,20	1,24	0,10	90	-22,97
164,70	0,88	0,12	94	-22,767
173,30	0,89	0,71	96	-22,88
174,30	1,07	1,10	94	-23,304

na = não analisado.

Profund. (m)	S1	S2	S3	Tmax	IH	ю	IP
9,8	0,15	0,14	0,83	311	1,78	10,57	0,52
10,3	0,4	0,09	0,51	286	1,02	5,8	0,82
10,8	0,19	0,05	1,51	301	0,68	20,43	0,79
11,3	0,27	0,18	2,65	345	1,89	27,89	0,60
11,8	0,06	0,17	1,31	492	3,22	24,86	0,26
12,3	0,01	0,02	3,53	457	0,46	81,15	0,33
12,8	0,01	0,01	10,59	494	0,24	256,42	0,50
13	0,01	0,02	16,98	490	0,19	163,27	0,33
25,75	0,02	0,01	12,07	455	0,12	141,83	0,67
26,25	0,02	0,03	1,12	450	0,58	21,54	0,40
26,75	0,02	0	2,96	579	0	38,54	1,00
27,25	0,04	0,05	1,3	425	0,81	21,03	0,44
28,15	0,03	0,01	2,61	308	0,18	47,541	0,75
28,25	0,02	0	6,76	295	0	190,96	1,00
29,25	0,02	0,02	1,65	426	0,49	40,54	0,50
29,75	0,01	0,01	1,35	318	0,35	48,024	0,50
30,75	0,02	0,01	2,27	319	0,77	175,97	0,67
31,2	0,01	0,01	1,73	319	0,61	106,79	0,50
31,9	0,02	0,03	0,84	400	1,86	52,17	0,40
58	0,01	0,01	0,02	582	0,92	1,85	0,50
58,3	0,12	0,56	0,13	525	3,81	0,88	0,18
59,3	0,05	0,09	3,37	515	0,8	30,09	0,36
60,3	0,04	0,32	6,5	478	1,66	33,68	0,11
61,3	0,11	0,37	2,53	526	3,19	21,81	0,23
62,3	0,26	0,18	14,75	310	2,43	199,05	0,59
156,1	0,06	0,84	0,98	445	79,24	92,45	0,07
162,3	0,07	0,84	1,24	443	64,12	94,65	0,08
162,8	0,1	1,36	0,37	443	93,15	25,34	0,07
164,2	0,08	1,2	0,58	442	96,77	46,77	0,06
174,3	0,04	0,23	4,52	451	21,49	422,43	0,15

Anexo 3 - Dados de pirólise do poço CAT 204

amostra	C ₂₉ 20S/(20S+20R)	C ₂₉ ββ/(αα+ββ)	MPI 3	MPI 1	RoC %	MDR	Rc2 %
5,8	0,55	0,58	-	-	-	-	-
7,3	0,54	0,6	-	-	-	-	-
9,3	0,58	0,61	-	-	-	-	-
10,3	0,55	0,63	-	-	-	-	
11,3	0,52	0,57	-	-	-	2,89	1,18
12,3	0,55	0,66	-		-	-	-
13	0,4	0,49	-	-	-	-	-
25,75	0,43	0,56	-	-	-	-	-
26,75	0,5	0,61	-	-	-	-	-
27,75	0,44	0,58	-	-	-	-	-
28,15	0,5	0,6	-	-	-	-	-
28,25	0,46	0,57	-	-	-	-	-
29,75	0,5	0,58	-	-	-	-	-
30,75	0,52	0,63	-	-	-	-	-
31,9	0,51	0,62	-	-	-	1,87	1,07
58	0,48	0,64	-	-	-	-	-
58,3	0,52	0,57	-	-	-	-	-
59,3	0,52	0,57	-	-	-	1,6	1,03
60,3	0,48	0,54	-	-	-	-	-
61,3	0,52	0,52	-	-	-	-	-
62,3	0,50	0,57	-	-	-	3,96	1,27
63,3	0,57	0,57	-	-	-	1,67	1,04
64,3	0,5	0,58	-	-	-	0,51	0,73
68,85	0,46	0,63	-	-	-	1	0,90
71,7	0,48	0,61	1,96	1,72	1,43	3,81	1,26
74,6	0,43	0,59	2,11	1,79	1,47	9,79	1,50
80,3	0,48	0,59	0,89	1,14	1,08	4,66	1,31
82,8	0,44	0,58	0,84	0,97	0,98	3,33	1,22
83,3	0,45	0,52	0,64	0,96	0,98	1,79	1,06
156,1	0,51	0,59	0,8	0,97	0,98	2,31	1,12
162,3	0,5	0,59	0,74	0,86	0,92	1,69	1,04
162,8	-	-	0,58	0,79	0,87	1,58	1,02
164,2	-	-	0,6	0,7	0,82	1,7	1,04
174,3	0,42	0,57	0,68	0,79	0,87	1,74	1,05

Anexo 4 - Razões moleculares indicadoras de maturação do poço CAT 204

Amostra	BB 1	BB 2	Irapuá	Bonito	
СОТ	76,10	na	56,70	65,70	
% S	4,90	na	6,53	1,18	
R.I. %	92	na	98	99	
δ ¹³ C	-23,594	na	-24,293	-20,634	
<u>\$1</u>					
(mg HC/g	na	na	3,22	1,12	
rocha)					
S2 (mg HC/g	na	na	33.06	26.13	
rocha)	nu	nu	55,00	20,13	
S3 (mg CO ₂ /g	na	na	269 14	69 58	
rocha)	iiu iiu	iiu	209,11	07,50	
IH	na		58 31	39.77	
(mg HC/g COT)	na na		20,51	57,11	
ΙΟ	na	na	474,67		
(mg CO ₂ /g				105,91	
COT)					
Tmax (°C)	na	na	441	441	
IP	na	na	0,09	0,04	
Hop. C ₃₁	0.61	0.61	0.60	0.59	
S/(R+S)	0,01	0,01	0,00	0,09	
C ₃₀ hop.	0.11	0.11	0.11	0.15	
Βα/(αβ+βα)	•,	•,		0,10	
Est. C ₂₉ aa	0.59	0.60	0.61	0.69	
S/(S+R)	0,05	0,00	0,01	0,09	
Est. C ₂₉	0.55	0.53	0.56	0.48	
ββ/(αα+ββ)	-,	-,	-,		
MPI 3	0,97	0,99	1,04	0,91	
MPI 1	0,71	0,80	0,78	0,65	
Rc %	0,82	0,88	0,87	0,79	
MDR	2,62	3,21	3,97	1,65	

Anexo 5 - Dados geoquímicos das amostras de carvão

na = não analisado, BB 1 e BB 2 = duas amostras da camada Barro Branco.