4.3 Geocronologia U-Pb e Lu-Hf

Durante os trabalhos de campo foram realizadas amostragens visando coletar rochas representativas do Complexo Caparaó. Os perfis levantados permitiram a caracterização das rochas dessa unidade apresentado no item anterior. Em adição foram coletadas amostras de duas intrusões graníticas observadas próximas ao Complexo Caparaó, encaixadas nos metassedimentos do Complexo Paraíba do Sul. As amostras foram processadas segundo os procedimentos descritos no capítulo 2 (Materiais e Métodos) para a separação desses zircões e os resultados isotópicos U-Pb e Lu-Hf são agora apresentados.

As técnicas analíticas-Pb e Lu-Hf foram aplicadas visando a compreensão da evolução crustal do Complexo Caparaó. Os procedimentos analíticos visaram a identificação temporal dos processos magmáticos e metamórficos ocorridos na região, bem como a caracterização de processos e fontes para a geração das rochas estudadas.

Os dados obtidos definem três grupos de idades. O primeiro é associado ao Paleoproterozoico, e outros ao mesoproterozoico e Neoproterozoico.

O primeiro grupo é representado pelas as amostras (CPR 03, CPR 04, CPR 10, CPR 08, CPR 13, CPR 20 e CPR 18) que apresentam idades de recristalização e de retrabalhamento metamórfico neoproterozoicas.

O segundo grupo e representado por uma amostra (CPR 05) que apresenta idades mesoproterozoicas (evento metamórfico de retrabalhamento das rochas paleoproterozoicas) e retrabalhamento metamórfico neoproterozoico.

E o último grupo representado pelas amostras (CPR 02, CPR 09, CPR 12, CPR 14, CPR 22 E CPR 15) apresenta idades geradas no Neoproterozoico.

Para todas as amostras, o método U-Pb foi realizado primeiramente. Sendo calculadas as idades de cristalização. Depois foram realizadas as análise de Lu-Hf. Tal procedimento é necessário pois nos cálculos do parâmetro (εHf) é necessário a obtenção das idades de cristalização. Nesse sentido, 10 grãos de zircão foram escolhidos para a análise de sendo que a cratera do laser da análise Lu-Hf foi posicionada na mesma área da cratera produzida pelo método U-Pb. No Anexo I encontram-se as imagens de catodoluminescência de todos os grãos utilizados nas análises U-Pb e Lu-Hf.

4.3.1 Amostra CPR 03

A amostra CPR 03 é representada pela Unidade Ortognaisse Granulítico. A petrografia desta amostra descreve uma rocha de composição félsica, de granulação variando de fina a

média e bandamentos materializados por minerais félsicos (quartzo, feldspato e poucos Kfeldspatos) e minerais máficos (principalmente ortopiroxênios). Uma variação da granulação bandamento é notada, ocorrendo cominuida e com contratos serrilhados, nessas porções as granadas começam a ocorrem juntamente com ortopiroxênio. Além disso, biotitas secundárias (alteradas) se concentram nessas bandas.

Os grãos de zircão ocorrem com morfologia variando de prismáticos a alongados e apresenta a reação comprimento/largura variando de 1:1 a1:5. Em geral os grãos mostram terminações arredondadas e raros casos terminações piramidais. As imagens de Catodoluminescência (CL) dos grãos mostram zoneamento oscilatório (com as camadas variando de espessura) interno bem definido, uma textura típica de crescimento em processos magmáticos (Figura 4.3.1-1).

As imagens de CL mostram grãos de zircão com núcleos e bordas (Figura 4.3.1-1 grãos B e F), sendo que as análises realizadas em borda e núcleo nem sempre resultaram em idades distintas, sugerindo um processo rehomogeneização isotópica do núcleo mais antigo durante o crescimento da borda no evento de retrabalhamento (metamorfismo na fácies granulito). Nos casos onde o núcleo apresenta cor cinza claro foram obtidas as melhores idades paleoproterozoicas, sugerindo a preservação da composição isotópica original. As bordas dos grãos de zircões neoproterozoicos ocorrem na coloração cinza claro ou cinza escuro e não apresenta zoneamento oscilatório muito claro, mas tende a ter padrões de variação de cor não regulares.

Figura 4.3.1-1: Imagem de catodoluminescência mostra a morfologia dos zircões

Legenda: (A) e (B) Zircões prismáticos com zonação oscilatório. (C) e (D) Zircões alongados e com faces arredondadas que apresentam zonação setorial. (E) Zonação convoluta. (F) Zircão nucleado com bordas de recristalização. Fonte: A autora, 2016.

Para esta amostra foi utilizados um total de 12 grãos, que geraram os dados analíticos apresentados na tabela 4.2.1-1. A maior parte das análises é concordante, com valores entre 90% e 110%. As análises exibem razões U/Th variando entre 0,5 e 1,5, que são associados a grão de zircão derivados de rochas magmáticas félsicas a intermediárias. Para construção do diagrama concórdia Wetherill e cálculo de idade selecionaram-se as doze medidas com melhor consistência analítica. Tal cálculo leva em consideração as razões 207 Pb/²³⁵U e 206 Pb/²³⁸U. A idade obtida no intercepto superior de 2212 ± 65 Ma (MSWD = 5,00) é interpretado como idade de cristalização do protólito magmático do ortognaisse e a idade 600 ± 24 (obtida no intercepto inferior), é interpretada como o pico metamórfico atingido nessas rochas (Figura 4.3.1-2).

Grão	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 03-A- 2	0,0024	8,44	44,21	78,02	0,56	0,7988	8,49	0,0967	5,47	0,64	0,0599	6,49	594,93	32,55	596,14	50,64	600,77	39,03	99,02
CPR 03-A- 5	0,0007	55,01	131,34	216,82	0,60	2,8824	6,04	0,1920	3,66	0,60	0,1089	4,80	1132,03	41,46	1377,31	83,22	1781,05	85,59	63,56
CPR 03-A- 6	0,0022	10,93	57,26	94,84	0,60	0,8281	8,79	0,1000	5,64	0,64	0,0601	6,73	614,18	34,68	612,54	53,85	606,50	40,86	101,26
CPR 03-A- 7	0,0037	8,67	58,90	76,17	0,77	0,7834	8,91	0,0944	5,68	0,63	0,0602	6,86	581,64	33,04	587,41	52,34	609,75	41,85	95,39
CPR 03-A- 8	0,0028	13,49	144,47	100,01	1,44	0,8482	8,44	0,1021	5,45	0,64	0,0602	6,44	626,88	34,20	623,63	52,66	611,89	39,44	102,44
CPR 03 - A-9	0,0019	14,27	48,44	134,23	0,36	0,8139	8,57	0,0982	5,69	0,66	0,0601	6,40	604,11	34,39	604,62	51,83	606,56	38,87	99,59
CPR 03-B- 1	0,0021	22,61	106,34	194,85	0,54	0,7705	3,24	0,0923	2,66	0,82	0,0605	1,84	569,20	15,15	580,05	18,79	622,79	11,50	91,39
CPR 03-B- 4	0,0005	68,91	151,88	298,57	0,50	2,1351	3,92	0,1622	2,81	0,71	0,0955	2,73	968,96	27,30	1160,22	45,59	1537,37	42,10	63,02
CPR 03-B- 5	0,0012	27,86	30,80	277,81	0,11	0,8051	1,78	0,0977	1,15	0,64	0,0597	1,36	601,1156	6,93	599,6984	10,72	594,34	8,12	101,13
CPR 03-B- 8	0,0032	15,31	134,98	123,42	1,09	0,8019	2,17	0,0985	1,11	0,51	0,0591	1,86	605,5087	6,77	597,9089	13,01	569,18	10,63	106,38
CPR 03 - C-1	0,0011	50,89	112,92	146,45	0,77	4,5978	5,61	0,2629	5,33	0,95	0,1268	1,73	1504,5764	80,28	1748,8772	98,12	2054,76	35,65	73,22
CPR 03-C- 8	0,0015	47,02	171,57	306,86	0,55	1,3664	4,89	0,1185	4,52	0,92	0,0837	1,86	721,6675	32,66	874,6160	42,82	1284,66	23,97	56,17

Figura 4.3.1-2- Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 03

Fonte: A autora, 2016.

Na tabela 4.3.1-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf das amostras estudadas para o método U-Pb. Para a amostra CPR 03 as dez análises Lu-Hf resultaram em valores de idade modelo T_{DM} entre 1,83 a 2,22 e os valores de ϵ Hf variam entre 8,7 e 16 calculados para a idade U-Pb de 2209 ± 22. A tabela 4.3.1-2 também mostra os valores de ϵ Hf calculados para a idade U-Pb de 596 ± 19, com valores entre -24,0 e -21,0 e valores de idade modelo T_{DM} entre 2,40 e 2,75.

Esses resultados indicam que a rocha analisada foi gerada a partir de um magma cujo período de extração mantélica é equivalente a idade U-Pb sugerindo um caráter juvenil para essa amostra. Em contrapartida, os altos valores negativos de ϵ Hf para a idade U-Pb neoproterozoica indica um retrabalhamento crustal que está relacionado a orogenia brasiliana, sendo a rocha em questão com idade T_{DM} arqueana.

Nas figuras 4.3.1-3 e 4.3.1-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismo dessa amostra respectivamente.

Amostra	Idade U-Pb	176 11 £/177 11 £	+2SE	176 T /177 LIF	+2SE	176 11 £/177 11 £ (*)	epsilon Hf	+28F	Idade T
CPP 03 A	Ivia	<u> </u>	±25E	Lu/ II	±25E	II / II (t)	(1)	±25E	I DM
2 CDD 02 A	2209 ± 22	0,281835	0,000065	0,000378	0,000013	0,281819	16,0	0,6	1,83
5 5	2209 ± 22	0,281738	0,000095	0,000808	0,000062	0,281704	11,9	0,9	2,04
CPR 03-A- 6	2209 ± 22	0,281759	0,000093	0,000381	0,000029	0,281743	13,3	1,0	1,97
CPR 03-A- 7 CPR 02 A	2209 ± 22	0,281732	0,000050	0,000078	0,000001	0,281729	12,8	0,1	2,00
9	2209 ± 22	0,281768	0,000042	0,000397	0,000011	0,281752	13,6	0,4	1,96
CPR 03-B-1	2209 ± 22	0,281826	0,000040	0,001150	0,000041	0,281778	14,6	0,5	1,91
CPR 03-B-4	2209 ± 22	0,281820	0,000037	0,000561	0,000018	0,281796	15,2	0,5	1,87
CPR 03-B-8	2209 ± 22	0,281785	0,000042	0,000375	0,000010	0,281770	14,3	0,4	1,92
CPR 03-C-1	2209 ± 22	0,281641	0,000054	0,000677	0,000023	0,281612	8,7	0,3	2,22
CPR 03-C-8	2209 ± 22	0,281810	0,000043	0,000519	0,000051	0,281788	14,9	1,5	1,89
CPR 03-A-									
2 CPR 03-A-	596 ± 19	0,281835	0,000065	0,000378	0,000013	0,281831	-20,4	0,7	2,40
5	596 ± 19	0,281738	0,000095	0,000808	0,000062	0,281729	-24,0	1,9	2,58
CPR 03-A- 6	596 ± 19	0,281759	0,000093	0,000381	0,000029	0,281754	-23,1	1,8	2,53
CPR 03-A- 7	596 ± 19	0,281732	0,000050	0,000078	0,000001	0,281731	-23,9	0,3	2,57
CPR 03-A- 9	596 ± 19	0,281768	0,000042	0,000397	0,000011	0,281764	-22,8	0,6	2,52
CPR 03-B-1	596 ± 19	0,281826	0,000040	0,001150	0,000041	0,281813	-21,0	0,8	2,43
CPR 03-B-4	596 ± 19	0,281820	0,000037	0,000561	0,000018	0,281814	-21,0	0,7	2,43
CPR 03-B-8	596 ± 19	0,281785	0,000042	0,000375	0,000010	0,281781	-22,1	0,6	2,49
CPR 03-C-1	596 ± 19	0,281641	0,000054	0,000677	0,000023	0,281633	-27,4	1,0	2,75
CPR 03-C-8	596 ± 19	0,281810	0,000043	0,000519	0,000051	0,281804	-21,3	2,1	2,44

Tabela 4.3.1-2 - Resultados das análises Hf nos grãos de zircão da CPR 03.

Notas: Valores de idade modelo adotadas são apresentadas na tabela 4.3.1-2. Fonte: A autora, 2016.

Figura 4.3.1-3 - Diagrama com valores de épsilon Hf vs. Tempo da amostra CPR 03

Fonte: A autora, 2016.

Figura 4.3.1-4 - Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. Tempo da amostra CPR 03

Fonte: A autora, 2016.

4.3.2 Amostra CPR 04

A amostra CPR 04 faz parte da Unidade Ortognaisse Granulítico e caracteriza-se petrograficamente por uma composição intermediária, variando sua granulação de fina a média e bandamento metamórfico é incipiente. O ortopiroxênio ocorre em grande quantidade, seguido de clinopiroxênio, que podem estar na maioria das vezes sendo substituídos por hornblendas (minerais máficos representam cerca de 40% da rocha). Já os minerais félsicos (plagioclásio, quartzo e K-feldspato) representam cerca de 60% da rocha. Texturas mimerquíticas e mesopertíticas são vistas frequentemente nessa amostra.

A morfologia dos grãos de zircão da amostra CPR 04 apresenta relação comprimento/ largura de 1:1 a 1:5. Ressalta nas imagens de CL bordas esbranquiçadas envolvendo núcleos cinza escuros. Quando o núcleo tem cor cinza mais claro observa-se o zoneamento oscilatório e as idades apontam herança isotópica paleoproterozoica. As bordas dos grãos de cor cinza claro apresentam idades neoproterozoicas (Figura 4.3.2-1).

Legenda: Padrões com núcleos cinza escuro, zoneamento oscilatório e bordas cinza claro. Fonte: A autora, 2016.

Amostra	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 04 A 01	0,0006	55,3120	89,0758	154,7662	0,5756	5,4840	7,13	0,3122	6,45	0,90	0,1274	3,04	1751,69	112,91	1898,10	135,26	2062,19	62,66	84,94
CPR 04 A 02	0,0003	103,0704	154,5617	270,3703	0,5717	5,5209	6,80	0,3066	6,15	0,91	0,1306	2,89	1724,16	106,12	1903,85	129,43	2105,77	60,80	81,88
CPR 04 A 03	0,0037	10,6816	117,0310	79,6571	1,4692	0,8333	10,33	0,0999	8,82	0,85	0,0605	5,37	614,09	54,18	615,46	63,58	620,51	33,34	98,97
CPR 04 A 04	0,0050	9,0405	77,1185	69,4674	1,1101	0,8811	10,08	0,1038	8,53	0,85	0,0616	5,37	636,75	54,32	641,57	64,66	658,57	35,35	96,69
CPR 04 A 05	0,0009	53,8082	117,1031	154,7914	0,7565	4,9903	5,10	0,2843	4,40	0,86	0,1273	2,58	1613,07	70,93	1817,68	92,63	2060,99	53,10	78,27
CPR 04 A 06	0,0059	7,8462	93,2416	56,6692	1,6454	0,8105	10,93	0,0953	9,45	0,86	0,0617	5,49	586,59	55,41	602,71	65,85	663,80	36,44	88,37
CPR 04 A 08	0,0006	94,9209	156,8388	245,6130	0,6386	5,4359	5,39	0,2995	4,68	0,87	0,1316	2,67	1688,78	78,99	1890,54	101,86	2119,97	56,70	79,66
CPR 04 A 09	0,0010	47,3044	82,9167	113,7735	0,7288	6,7046	4,45	0,3624	3,69	0,83	0,1342	2,49	1993,50	73,56	2073,23	92,32	2153,41	53,67	92,57
CPR 04 B 01	0,0027	13,2408	117,6066	100,2199	1,1735	0,8321	6,96	0,0999	6,58	0,94	0,0604	2,28	614,02	40,39	614,76	42,80	617,49	14,10	99,44
CPR 04 B 02	0,0014	29,1832	123,7748	242,5278	0,5104	0,8755	6,71	0,1039	6,42	0,96	0,0611	1,92	637,16	40,93	638,54	42,82	643,43	12,37	99,02
CPR 04 B 03	0,0007	52,7341	108,1384	178,7304	0,6050	4,0987	8,02	0,2494	7,71	0,96	0,1192	2,21	1435,25	110,70	1654,05	132,69	1944,34	42,89	73,82
CPR 04 B 06	0,0039	11,6793	153,0173	79,6428	1,9213	0,8140	9,51	0,0977	8,73	0,92	0,0604	3,78	600,83	52,42	604,70	57,49	619,21	23,39	97,03
CPR 04 B 09	0,0235	1,5235	19,5451	11,2960	1,7303	0,8118	11,68	0,0943	7,71	0,66	0,0625	8,77	580,66	44,78	603,48	70,49	690,14	60,55	84,14
CPR 04 C 01	0,0020	14,9430	79,6238	123,2823	0,6459	0,7894	12,51	0,0944	10,87	0,87	0,0606	6,19	581,72	63,23	590,83	73,90	625,97	38,75	92,93
CPR 04 C 02	0,0010	78,0866	84,3003	194,7928	0,4328	6,7791	4,62	0,3672	3,59	0,78	0,1339	2,91	2016,43	72,38	2083,00	96,26	2149,46	62,55	93,81
CPR 04 C 06	0,0007	45,1598	76,4888	123,9084	0,6173	5,4389	6,12	0,3020	5,30	0,87	0,1306	3,06	1701,15	90,16	1891,00	115,74	2106,37	64,47	80,76
CPR 04 C 09	0,0006	55,1420	80,7343	123,0541	0,6561	6,7483	6,66	0,3622	5,98	0,90	0,1351	2,92	1992,66	119,21	2078,96	138,38	2165,59	63,20	92,01
CPR 04 D 02	0,0010	38,3593	68,7556	126,4980	0,5435	4,7096	5,17	0,2788	3,20	0,62	0,1225	4,06	1585,34	50,74	1768,95	91,45	1993,14	80,92	79,54
CPR 04 D 04	0,0003	69,8930	123,1383	264,0116	0,4664	3,6663	7,92	0,2237	6,73	0,85	0,1188	4,17	1301,63	87,62	1564,06	123,89	1938,89	80,93	67,13
CPR 04 D 06	0,0010	43,2573	69,6252	121,6564	0,5723	5,8175	4,94	0,3293	3,63	0,73	0,1281	3,35	1834,83	66,64	1949,03	96,33	2072,63	69,48	88,53
CPR 04 D 07	0,0003	78,8133	108,5636	238,4305	0,4553	4,5341	5,01	0,2574	3,67	0,73	0,1277	3,42	1476,64	54,19	1737,25	87,09	2067,18	70,61	71,43
CPR 04 D 09	0,0004	73,5576	118,6024	224,3141	0,5287	4,3566	5,76	0,2507	4,49	0,78	0,1260	3,61	1441,97	64,79	1704,14	98,22	2043,53	73,77	70,56
Fonte: A a	utora, 20)16.																	

Na amostra CPR 04 foram utilizados um total de 22 grãos, cujos dados analíticos estão apresentados na tabela 4.3.1-1. Na construção do diagrama da concórdia e cálculo de idade $(^{207}\text{Pb}/^{235}\text{U} vs. ^{206}\text{Pb}/^{238}\text{U})$ os dados selecionados apresentam melhor consistência analítica com concordâncias variando de 70 a 99% e erros menores que 10,87 (%) o que resulta em elipses de pequenas dimensões. A idade obtida no intercepto superior de 2199 ± 20 Ma (MSWD = 1,2) é interpretado como idade de cristalização do protólito magmático do ortognaisse e a idade 600 ± 20 obtida no intercepto inferior, é interpretada como o pico metamórfico atingido nessas rochas (Figura 4.3.2-2).

Figura 4.3.2-2 - Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 04

Fonte: A autora, 2016.

Na tabela 4.3.2-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf da amostra estudada para o método U-Pb. Na amostra CPR 04 as dez análises Lu-Hf resultaram em valores de idade modelo TDM entre 2,51 a 3,39 e os valores de ϵ Hf variam entre -14,3 e 2 calculados para a idade U-Pb de 2109 ± 20. A tabela 4.3.1-2 também mostra os valores de ϵ Hf calculados para a idade U-Pb de 603 ± 20, com valores entre -49,7 e -33,8 e valores de idade modelo TDM entre 3,07 e 3,87.

Ao contrário da amostra anterior, a amostra CPR04 revela em seus resultados de ε Hf positivos e negativos, que as fontes magmáticas envolvidas em sua formação foram tanto juvenis quanto crustais, sendo sua idade de extração mantélica (T_{DM}) ocorrida no período do

Arqueano. Tal período de depletação foi observado tanto para as idades paleoproterozoica quanto para a idade neoproterozoica. Por fim, os altos valores de ɛHf da idade de intercepto inferior U-Pb indicam que a rocha em questão foi retrabalhada e a fusão em questão tem caráter crustal.

Nas figuras 4.3.2-3 e 4.3.2-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismo dessa amostra respectivamente.

Amostra	Idade U-Pb Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	EHf (t)	±2SE	Idade T _{DM}
CPR 03									
CPR 04-D-02	2109 ± 20	0,281326	0,000078	0,000316	0,000067	0,281313	-2,3	0,5	2,77
CPR 04-A-03	2109 ± 20	0,281456	0,000039	0,000024	0,000000	0,281455	2,8	0,0	2,51
CPR 04-A-02	2109 ± 20	0,281010	0,000049	0,000842	0,000013	0,280975	-14,3	0,2	3,39
CPR 04-D-04	2109 ± 20	0,281027	0,000046	0,000668	0,000022	0,280999	-13,4	0,5	3,35
CPR 04-A-08	2109 ± 20	0,281079	0,000043	0,000865	0,000029	0,281042	-11,9	0,4	3,27
CPR 04-A-09	2109 ± 20	0,281279	0,000040	0,000358	0,000003	0,281264	-4,0	0,0	2,86
CPR 04-D-06	2109 ± 20	0,281232	0,000034	0,000579	0,000009	0,281207	-6,0	0,1	2,97
CPR 04-D-07	2109 ± 20	0,281026	0,000039	0,000604	0,000004	0,281001	-13,4	0,1	3,35
CPR 04-D-09	2109 ± 20	0,281031	0,000034	0,000605	0,000039	0,281006	-13,2	0,9	3,34
CPR 04-B-01	2109 ± 20	0,281451	0,000034	0,000021	0,000000	0,281450	2,6	0,0	2,52
CPR 04-D-02	603 ± 20	0,281326	0,000078	0,000316	0,000067	0,281323	-38,3	8,1	3,30
CPR 04-A-03	603 ± 20	0,281456	0,000039	0,000024	0,000000	0,281456	-33,6	0,5	3,07
CPR 04-A-02	603 ± 20	0,281010	0,000049	0,000842	0,000013	0,281000	-49,7	0,8	3,87
CPR 04-D-04	603 ± 20	0,281027	0,000046	0,000668	0,000022	0,281019	-49,1	1,7	3,84
CPR 04-A-08	603 ± 20	0,281079	0,000043	0,000865	0,000029	0,281069	-47,3	1,6	3,75
CPR 04-A-09	603 ± 20	0,281279	0,000040	0,000358	0,000003	0,281275	-40,0	0,4	3,39
CPR 04-D-06	603 ± 20	0,281232	0,000034	0,000579	0,000009	0,281225	-41,8	0,7	3,47
CPR 04-D-07	603 ± 20	0,281026	0,000039	0,000604	0,000004	0,281019	-49,1	0,4	3,84
CPR 04-D-09	603 ± 20	0,281031	0,000034	0,000605	0,000039	0,281024	-48,9	3,2	3,83
CPR 04-B-01	603 ± 20	0,281451	0,000034	0,000021	0,000000	0,281451	-33,8	0,4	3,07

Tabela 4.3.2-2: Resultados das análises Hf nos grãos de zircão da CPR 04.

Figura 4.3.2-3: Diagrama com valores de épsilon Hf vs. Tempo da amostra CPR 04.

Figura 4.3.2-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. Tempo da amostra CPR 04.

Fonte: A autora, 2016.

Fonte: A autora, 2016.

4.3.3 Amostra CPR 10

Na amostra CPR 10 a petrografia indica uma rocha de composição intermediária, sendo a porcentagem máficos 50 % (clinopiroxênio, ortopiroxênio, hornblenda e biotitas) e félsicos 50% (quartzo e plagioclásio, poucos k-feldspatos). Rocha ocorre levemente foliação e sua granulação é média. A textura de aglomerados minerais de clinopiroxênio e ortopiroxênio é característica desta amostra.

Os zircões observados nessa amostra CPR 10 em sua maioria apresentam o hábito prismático preservado, porém com certo arredondamento nas arestas dos cristais. Os núcleos mostram crescimento com zonação oscilatória, caraterizada pela alternância de bandas claras e escuras. As análises nessa porção dos grãos de zircão apresentam herança isotópica paleoproterozoica. Muitos grãos possuem um fino sobrecrescimento metamórfico indicado pela imagem CL pela cor esbranquiçada.

As análises nessa área dos grãos foram dificultadas devido à pequena dimensão da borda metamórfica ou pela região estar fraturada, o que limita a qualidade das análises adquiridas. (Figura 4.3.3-1). Os resultados obtidos nesta porção dos grãos de zircão indicam idade neoproterozoica.

Figura 4.3.3-1: Imagem de catodoluminescência mostra a morfologia dos zircões com

Legenda: Zonação oscilatória e envoltórios de alta luminescência. Fonte: A autora, 2016.

Tabela 4.3.3-1: Dados isotópicos U-Pb LA-ICP-MS da amostra CPR 10.

Grão	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 10 A 01	0,0002	98,51	138,66	385,21	0,35	3,8423	3,60	0,2363	2,89	0,80	0,11	2,13	1367,52	39,64	1601,66	57,69	1924,98	41,15	71,04
CPR 10 A 02	0,0001	36,18	39,37	130,36	0,30	4,5292	5,62	0,2643	5,34	0,95	0,12	1,74	1512,22	80,86	1736,35	97,69	2018,11	35,26	74,93
CPR 10 A 03	0,0004	89,45	98,43	251,06	0,39	6,6608	3,62	0,3637	3,35	0,92	0,13	1,36	2000,12	67,16	2067,44	74,91	2135,23	29,07	93,67
CPR 10 A 05	0,0005	63,18	12,25	238,79	0,05	3,6795	2,03	0,2286	1,89	0,93	0,11	0,74	1327,25	25,10	1566,94	31,85	1906,74	14,19	69,61
CPR 10 A 07	0,0007	28,84	0,907	305,31	0,002	0,8255	2,05	0,0987	1,60	0,78	0,06	1,28	607,065	9,73	611,15	12,54	626,29	8,02	96,93
CPR 10 A 08	0,0012	7,343	2,00	79,59	0,02	0,7905	4,62	0,1007	2,53	0,54	0,05	3,86	618,820	15,66	591,48	27,33	487,91	18,86	126,83
CPR 10 A 09	0,0009	36,56	22,43	93,06	0,24	6,8537	1,72	0,3633	1,53	0,89	0,13	0,77	1997,89	30,74	2092,69	36,02	2187,27	16,88	91,34
CPR 10 B 04	0,0017	56,55	72,49	231,82	0,31	4,1465	5,60	0,2551	4,77	0,85	0,11	2,92	1465,09	70,00	1663,52	93,19	1923,95	56,25	76,15
CPR 10 B 05	0,0004	123,22	127,03	337,92	0,37	6,3475	4,65	0,3433	4,32	0,92	0,13	1,71	1902,83	82,31	2025,04	94,22	2152,01	36,87	88,42
CPR 10 B 06	0,0001	111,82	109,39	272,24	0,40	7,9098	3,21	0,4179	2,44	0,75	0,13	2,09	2251,04	54,95	2220,81	71,50	2193,02	46,03	102,65
CPR 10 B 07	0,0001	121,74	85,93	324,74	0,26	6,8144	3,27	0,3688	2,69	0,82	0,13	1,86	2024,08	54,48	2087,60	68,39	2150,84	40,16	94,11
CPR 10 B 08	0,0008	34,82	4,77	341,61	0,013	0,8871	6,14	0,1048	5,15	0,83	0,06	3,34	642,522	33,11	644,84	39,63	652,95	21,86	98,40
CPR 10 B 09	0,0020	15,97	22,43	42,89	0,52	5,6643	3,74	0,3103	3,12	0,83	0,13	2,07	1742,61	54,38	1925,94	72,15	2129,45	44,14	81,83
CPR 10 C 01	0,0122	4,69	66,78	30,80	2,16	0,8096	6,83	0,1021	5,93	0,86	0,05	3,39	627,180	37,23	602,25	41,18	509,50	17,28	123,10
CPR 10 C 02	0,0004	66,47	81,87	246,83	0,33	4,0076	7,89	0,2393	7,50	0,95	0,12	2,42	1383,23	103,84	1635,75	129,06	1977,59	48,00	69,95
CPR 10 C 03	0,0001	190,15	63,78	741,16	0,08	2,8769	3,94	0,1904	3,56	0,90	0,10	1,69	1124,01	40,04	1375,90	54,30	1791,76	30,42	62,73

Tabela 4.3.3-1: Dados isotópicos U-Pb LA-ICP-MS da amostra CPR 10. (Conclusão)

CPR 10 C 06	0,0002	152,56	33,15	1498,6	0,02	0,8985	5,97	0,1075	5,20	0,87	0,06	2,92	658,64	34,30	650,95	38,90	624,35	18,28	105,49
CPR 10 C 07	0,0008	55,48	49,57	143,97	0,344	6,9223	3,73	0,3737	3,30	0,88	0,13	1,73	2046,95	67,73	2101,53	78,55	2155,40	37,48	94,97
CPR 10 C 08	0,0003	77,41	62,62	280,26	0,22	4,8665	2,84	0,2843	2,14	0,75	0,12	1,86	1613,37	34,62	1796,48	51,12	2016,19	37,67	80,02
CPR 10 C 09	0,0019	26,04	41,69	73,13	0,57	5,7895	4,78	0,3237	4,28	0,89	0,12	2,13	1808,17	77,46	1944,84	93,11	2093,69	44,74	86,36
CPR 10 D 01	0,0013	48,09	73,50	238,62	0,30	2,6388	4,88	0,1804	4,33	0,88	0,10	2,26	1069,66	46,33	1311,54	64,08	1732,36	39,16	61,75
CPR 10 D 02	0,0005	96,54	100,26	247,74	0,40	6,3850	2,17	0,3451	2,07	0,95	0,13	0,63	1911,60	39,66	2030,21	44,07	2153,03	13,75	88,79
CPR 10 D 03	0,0003	131,48	150,26	362,53	0,41	5,5993	3,78	0,3094	3,64	0,96	0,13	1,04	1737,97	63,31	1916,00	72,60	2114,57	22,03	82,19
CPR 10 D 05	0,0048	12,86	41,91	123,13	0,34	0,8876	2,71	0,1073	1,48	0,54	0,05	2,26	657,08	9,75	645,11	17,49	603,40	13,69	108,90
CPR 10 D 07	0,0082	7,77	24,08	79,76	0,30	0,8014	3,04	0,0955	1,31	0,43	0,06	2,74	588,50	7,73	597,67	18,20	632,59	17,38	93,03
CPR 10 D 08	0,0012	20,33	1,15	193,51	0,005	0,8782	2,12	0,1053	1,57	0,73	0,06	1,43	645,73	10,1	640,05	13,62	620,05	8,90	104,14
CPR 10 D 09	0,0038	13,96	2,55	145,96	0,01	0,8222	2,14	0,0992	1,17	0,55	0,06	1,78	610,20	7,19	609,30	13,04	605,91	10,82	100,71

Os dados analíticos das análises U-Pb da amostra CPR 10 encontram-se na tabela 4.3.3-1, apresentam erros analíticos menores que 7,5 (%) e valores concordantes variando de 70% a 123%. Para esta amostra foram realizados 27 *spots*, sendo estes concordantes ou que plotaram próximas a curva da concórdia gerando uma população com idade de cristalização de 2196±14 marcando o intercepto superior da curva da concórdia e 633±22, marcando o intercepto inferior e o metamorfismo ocorrido. O MSWD foi de aproximadamente 6.2 (Figura 4.3.3-2).

Fonte: A autora, 2016.

Na tabela 4.3.3-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf das amostras estudadas para o método U-Pb. Na amostra CPR 10 as dez análises Lu-Hf resultaram em valores de idade modelo TDM entre 2,31 a 3,05 e os valores de ϵ Hf variam entre -7,7 e 6,6 calculados para a idade U-Pb de 2196 ± 14. A tabela 4.3.1-2 também mostra os valores de ϵ Hf calculados para a idade U-Pb de 633 ± 22, com valores entre -42,0 e -28,8 e valores de idade modelo TDM entre 2,85 e 3,55.

Tal qual a amostra CPR 03, os resultados da amostra CPR 10 indicam que a rocha de onde foram extraídos os zircões foi gerada a partir de um magma mantélico, sugerindo um caráter juvenil para essa amostra, entretanto, pode ter havido um pouco de contribuição crustal no processo (valor de ɛHf chega a -7,7). Os valores de ɛHf negativos indicam a

geração de líquidos magmáticos (anatexia durante o pico metamórfico) a partir do protólito gnáissico paleoproterozoico. A idade de extração mantélica da amostra para ambas as idades U-Pb ocorrem desde o Arqueano até o Paleoproterozoico.

Nas figuras 4.3.3-3 e 4.3.3-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismo dessa amostra respectivamente.

Amostro	Idade U-Pb					¹⁷⁶ Hf/ ¹⁷⁷ Hf			Idade
Allosua	Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	(t)	EHf (t)	±2SE	TDM
CPR 10-A- 02	2196 ± 14	0,281317	0,000073	0,000342	0,000007	0,281303	-2,7	0,1	2,79
03 CPR 10-A-	2196 ± 14	0,281577	0,000044	0,000280	0,000011	0,281565	6,6	0,3	2,31
09	2196 ± 14	0,281300	0,000056	0,000479	0,000006	0,281280	-3,5	0,0	2,84
CPR 10-B-05	2196 ± 14	0,281323	0,000067	0,000914	0,000041	0,281285	-3,3	0,2	2,83
CPR 10-B-06	2196 ± 14	0,281497	0,000047	0,000383	0,000040	0,281481	3,6	0,4	2,47
CPR 10-B-09	2196 ± 14	0,281247	0,000045	0,000474	0,000008	0,281227	-5,4	0,1	2,93
CPR 10-C-02	2196 ± 14	0,281183	0,000049	0,000484	0,000006	0,281163	-7,7	0,1	3,05
CPR 10-C-08	2196 ± 14	0,281205	0,000041	0,000539	0,000021	0,281182	-7,0	0,3	3,02
CPR 10-C-09	2196 ± 14	0,281295	0,000057	0,000783	0,000063	0,281262	-4,1	0,3	2,87
CPR 10-D- 01	2196 ± 14	0,281214	0,000049	0,000501	0,000001	0,281193	-6,6	0,0	3,00
CPR 10-A- 02 CPR 10 A	633 ± 22	0,281317	0,000073	0,000342	0,000007	0,281313	-38,0	0,8	3,31
03 CDD 10 A	633 ± 22	0,281577	0,000044	0,000280	0,000011	0,281573	-28,8	1,1	2,85
09	633 ± 22	0,281300	0,000056	0,000479	0,000006	0,281295	-38,6	0,5	3,34
CPR 10-B-05	633 ± 22	0,281323	0,000067	0,000914	0,000041	0,281312	-38,0	1,7	3,31
CPR 10-B-06	633 ± 22	0,281497	0,000047	0,000383	0,000040	0,281492	-31,6	3,3	2,99
CPR 10-B-09	633 ± 22	0,281247	0,000045	0,000474	0,000008	0,281242	-40,5	0,7	3,44
CPR 10-C-02	633 ± 22	0,281183	0,000049	0,000484	0,000006	0,281178	-42,8	0,6	3,55
CPR 10-C-08	633 ± 22	0,281205	0,000041	0,000539	0,000021	0,281199	-42,0	1,6	3,51
CPR 10-C-09 CPR 10-D-	633 ± 22	0,281295	0,000057	0,000783	0,000063	0,281286	-38,9	3,2	3,36
01	633 ± 22	0,281214	0,000049	0,000501	0,000001	0,281208	-41,7	0,1	3,49

Tabela 4.3.3-2: Resultados das análises Hf nos grãos de zircão da CPR 10.

Figura 4.3.3-3: Diagrama com valores de épsilon Hf vs. tempo da amostra CPR 10.

Fonte: A autora, 2016.

Figura 4.3.3-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. Tempo da amostra CPR 10

Fonte: A autora, 2016.

4.3.4 Amostra CPR 08

A amostra CPR 08 representa uma das unidades encaixantes do Complexo Caparaó, trata-se de granitoides foliados/deformados, inseridos na Suíte Galiléia (Noce, 2007). Essa rocha é composta de 60% de minerais félsicos (quartzo, plagioclásio e k-feldspatos) e 40% de minerais máficos (ortopiroxênio, hornblendas, biotitas e opacos). a granulação pode variar de fina a média e os contatos entre grãos observados são serrilhados.

Nessa amostra, de modo geral a imagens de catodoluminescência mostram os zircões com formas arredondadas onde predominam grãos subeuédricos (padrão comprimento/largura variando de 1:2 a 1:3, mais homogêneos comparados com as outras amostras). O padrão de zonação oscilatório predomina e a pontualidade de pequenas regiões com contraste na luminescência no centro de alguns grãos torna-se corriqueiras. Novamente o sobrecrescimento metamórfico é visto nos grãos, onde as imagens CL mostra tons claros de cinza (Figura 4.3.2-1) onde as bordas dos grãos de zircão são espessas o suficiente as análises realizadas confirmam idades neoproterozoicas.

Fonte: A autora, 2016.

Um total de 32 spots em 32 grãos foi realizado na amostra e os resultados as análises são apresentadas na tabela 4.3.4-1. Os erros analíticos ocorrem menores que 4,6% e as concordâncias com valores entre 76 e 110%. Com a construção do diagrama da concórdia e cálculo da idade de cristalização selecionou-se as os *spots* que apresentavam boa consistência

analítica. Os grãos descrevem uma nítida discórdia relacionada à perda de chumbo, sinalizando idade metamórfica no intercepto inferior em 622±46 Ma. A idade da cristalização magmática do protólito do ortognaisse é dada pelo intercepto superior em 2194±16 Ma com MSWD de 11,4 (Figura 4.3.4-2).

Tabela 4.3.4-1: Dados isotópicos U-Pb LA-ICP-MS da amostra CPR 08.

Grão	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	²⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 08-A-01	0,0008	141,93	163,82	319,98	0,51	6,6062	1,22	0,3494	0,92	0,76	0,1371	0,80	1931,696	17,84	2060,18	25,17	2191,30	17,53	88,15
CPR 08-A-02	0,0011	79,82	202,07	543,89	0,37	1,5724	1,52	0,1297	0,86	0,57	0,0880	1,25	785,8956	6,76	959,3851	14,57	1381,59	17,29	56,88
CPR 08-A-03	0,0007	108,82	108,80	301,38	0,36	6,3043	1,93	0,3444	1,04	0,54	0,1327	1,63	1907,992	19,77	2019,055	38,99	2134,62	34,79	89,38
CPR 08 A 04	0,0057	92,78	142,94	279,66	0,51	5,2638	2,76	0,2954	1,77	0,64	0,1292	2,12	1668,558	29,48	1863,019	51,44	2087,52	44,30	79,93
CPR 08 A 05	0,0010	36,85	63,29	214,55	0,29	2,1951	2,33	0,1575	1,74	0,75	0,1011	1,54	942,9137	16,42	1179,483	27,45	1643,96	25,39	57,36
CPR 08 A 06	0,0028	39,66	55,81	92,33	0,60	7,1846	2,18	0,3810	1,98	0,91	0,1368	0,90	2080,797	41,21	2134,595	46,43	2186,80	19,67	95,15
CPR 08 A 08	0,0006	112,93	118,42	254,82	0,46	6,9191	3,10	0,3678	2,94	0,95	0,1364	0,96	2019,165	59,44	2101,114	65,07	2182,36	20,97	92,52
CPR 08 A 09	0,0020	48,91	82,74	100,07	0,83	6,8098	3,18	0,3601	2,98	0,93	0,1372	1,13	1982,512	58,99	2086,999	66,44	2191,72	24,82	90,45
CPR 08 B 04	0,0015	21,90	34,05	56,30	0,60	5,8159	2,00	0,3228	1,53	0,76	0,1307	1,30	1803,227	27,55	1948,781	39,04	2107,19	27,30	85,57
CPR 08 B 05	0,0029	13,82	15,66	41,82	0,37	4,9139	3,17	0,2790	2,60	0,82	0,1277	1,82	1586,253	41,24	1804,649	57,29	2067,17	37,67	76,74
CPR 08 B 06	0,0026	29,22	37,77	64,75	0,58	6,6107	4,31	0,3485	4,11	0,95	0,1376	1,31	1927,653	79,26	2060,781	88,91	2196,69	28,70	87,75
CPR 08 B 07	0,0045	10,76	11,33	23,35	0,49	7,6937	6,20	0,4096	5,91	0,95	0,1362	1,89	2212,916	130,73	2195,868	136,19	2179,99	41,18	101,51
CPR 08 B 08	0,0012	71,93	54,88	151,90	0,36	7,4920	3,06	0,3940	2,95	0,96	0,1379	0,82	2141,58	63,15	2172,033	66,46	2200,93	17,98	97,30
CPR 08 B 09	0,0004	234,40	101,20	532,99	0,19	5,7088	4,34	0,3078	4,17	0,96	0,1345	1,19	1729,694	72,20	1932,698	83,90	2157,95	25,72	80,15
CPR 08 C 01	0,0011	54,26	62,85	129,40	0,49	6,6864	2,51	0,3601	2,26	0,90	0,1347	1,10	1982,847	44,75	2070,824	51,99	2159,53	23,76	91,82
CPR 08 C 02	0,0026	32,74	57,85	98,71	0,59	5,0994	3,07	0,2920	2,53	0,82	0,1267	1,75	1651,409	41,70	1836,012	56,41	2052,25	35,92	80,47
CPR 08 C 03	0,0006	101,77	33,96	298,32	0,11	5,8846	2,62	0,3296	2,18	0,83	0,1295	1,46	1836,482	40,00	1958,961	51,40	2090,97	30,59	87,83
CPR 08 C 06	0,0043	19,95	27,41	61,45	0,45	4,7752	4,43	0,2765	3,94	0,89	0,1253	2,02	1573,755	62,00	1780,544	78,84	2032,34	41,08	77,44
CPR 08 C 07	0,0005	115,32	8,11	1103,79	0,01	0,8532	2,62	0,1025	2,33	0,89	0,0604	1,19	628,8776	14,68	626,3796	16,41	617,37	7,34	101,86
CPR 08 C 08	0,0003	185,03	181,17	412,30	0,44	6,9564	5,07	0,3768	5,02	0,99	0,1339	0,71	2061,541	103,52	2105,882	106,81	2149,48	15,36	95,91
CPR 08 D 01	0,0008	89,99	90,83	203,13	0,45	7,3850	2,05	0,3929	1,85	0,90	0,1363	0,88	2136,407	39,52	2159,159	44,20	2180,86	19,14	97,96
CPR 08 D 02	0,0030	17,47	19,51	47,32	0,41	5,7011	3,93	0,3170	3,08	0,78	0,1304	2,44	1775,262	54,63	1931,542	75,86	2103,63	51,33	84,39
CPR 08 D 03	0,0037	15,40	50,16	96,13	0,52	1,5125	4,59	0,1287	3,93	0,86	0,0852	2,38	780,6733	30,66	935,4651	42,96	1320,32	31,42	59,13
CPR 08 D 05	0,0014	37,90	19,89	106,76	0,19	6,6252	1,95	0,3637	1,27	0,65	0,1321	1,49	1999,538	25,33	2062,704	40,31	2126,42	31,65	94,03
CPR 08 D 07	0,0005	171,69	31,02	563,53	0,06	5,3928	1,65	0,3082	1,40	0,85	0,1269	0,86	1731,957	24,30	1883,707	31,02	2055,40	17,71	84,26
CPR 08 D 08	0,0005	104,37	26,91	936,70	0,03	0,9523	3,09	0,1136	2,80	0,91	0,0608	1,30	693,6009	19,44	679,3099	20,98	632,23	8,21	109,71
CPR 08 D 09	0,0014	27,95	43,82	82,12	0,53	5,1249	4,53	0,2976	4,10	0,90	0,1249	1,94	1679,189	68,80	1840,235	83,42	2027,57	39,32	82,82

Figura 4.3.4-2: Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 08.

Fonte: A autora, 2016.

Na tabela 4.3.3-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf da amostra CPR 08 para o método U-Pb, que resultaram em valores de idade modelo TDM entre 1,88 e 3,06 e valores de ε Hf variam entre -7,8 e 14,8 calculados para a idade U-Pb de 2194± 16. Os resultados para a idade U-Pb de 622 ± 46, mostra valores de idade modelo TDM entre 2,43 e 3,05 e valores de ε Hf variando entre -43,8 e -20,6.

Os resultados indicam que a rocha analisada cristalizada no Paleoproterozoico foi gerada a partir de um magma cujo período de extração mantélica perdura por um período de tempo arqueano até o paleoproterozoico. Além disso, os valores de ɛHf sugerem um caráter juvenil para essa amostra, mas que pudera ter contribuição crustal em sua formação. Na idade neoproterozoica é visto assim como na amostra CPR 04 um uma idade de extração mantélica Arqueana com retrabalhamento crustal no Evento Brasiliano.

Nas figuras 4.3.4-3 e 4.3.4-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismo dessa amostra respectivamente.

Amostra	Idade U-Pb Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	EHf (t)	±2SE	Idade TDM
CPR 08-A-06	2194±16	0,281220	0,000076	0,000868	0,000038	0,281184	-7,0	0,3	3,01
CPR 08-A-09	2194 ± 16	0,281189	0,000035	0,000635	0,000008	0,281162	-7,8	0,1	3,05
CPR 08-B-07	2194 ± 16	0,281238	0,000070	0,000493	0,000020	0,281218	-5,8	0,2	2,95
CPR 08-B-09	2194±16	0,281185	0,000036	0,000549	0,000002	0,281162	-7,7	0,0	3,05
CPR 08-D-03	2194 ± 16	0,281162	0,000041	0,000534	0,000032	0,281140	-8,5	0,5	3,09
CPR 08-D-07	2194±16	0,281311	0,000038	0,000487	0,000029	0,281291	-3,2	0,2	2,82
CPR 08-C-06	2194±16	0,281285	0,000114	0,000324	0,000023	0,281271	-3,9	0,3	2,85
CPR 08-D-08	2194±16	0,281579	0,000026	0,000144	0,000006	0,281573	6,8	0,3	2,30
CPR 08-C-02	2194±16	0,281191	0,000044	0,000725	0,000021	0,281160	-7,8	0,2	3,06
CPR 08-C-07	2194±16	0,281816	0,000038	0,000433	0,000016	0,281798	14,8	0,6	1,88
CPR 08-A-06	622 ± 46	0,281220	0,000076	0,000868	0,000038	0,281210	-41,9	1,9	3,50
CPR 08-A-09	622 ± 46	0,281189	0,000035	0,000635	0,000008	0,281181	-42,9	0,6	3,55
CPR 08-B-07	622 ± 46	0,281238	0,000070	0,000493	0,000020	0,281233	-41,1	1,7	3,45
CPR 08-B-09	622 ± 46	0,281185	0,000036	0,000549	0,000002	0,281179	-43,0	0,2	3,55
CPR 08-D-03	622 ± 46	0,281162	0,000041	0,000534	0,000032	0,281156	-43,8	2,7	3,59
CPR 08-D-07	622 ± 46	0,281311	0,000038	0,000487	0,000029	0,281306	-38,5	2,4	3,33
CPR 08-C-06	622 ± 46	0,281285	0,000114	0,000324	0,000023	0,281281	-39,4	2,9	3,37
CPR 08-D-08	622 ± 46	0,281579	0,000026	0,000144	0,000006	0,281577	-28,9	1,1	2,84
CPR 08-C-02	622 ± 46	0,281191	0,000044	0,000725	0,000021	0,281182	-42,9	1,3	3,54
CPR 08-C-07	622 ± 46	0,281816	0,000038	0,000433	0,000016	0,281811	-20,6	0,8	2,43

Tabela 4.3.4-2: Resultados das análises Hf nos grãos de zircão da CPR 08.

Figura 4.3.4-3: Diagrama com valores de épsilon Hf vs. tempo da amostra CPR 08.

```
Fonte: A autora, 2016.
```


Figura 4.3.4-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. Tempo da amostra CPR 08.

Fonte: A autora, 2016.

4.3.5 Amostra CPR 13

A amostra CPR 13 está contida na variação milonítica do Ortognaisse Granulítico, encontrando-se nas bordas do Complexo Caparaó. A Segregação de bandas máficas (clinopiroxênio e ortopiroxênio) e félsicas (quartzo, plagioclásio e K-feldspato) é bem marcada e a recristalização de quartzos ocorrem de forma acentuada.

As imagens de catodoluminescência mostram uma família homogênea de cristais de zircão magmático, prismáticos (relação largura/ comprimento variando de 1:2 a 1:3), euédricos a subédricos. Grande parte desses grãos ocorrem com zoneamento oscilatório e alguns com delgado sobrecrescimento metamórfico com padrão não uniforme de zoneamento. Nesta amostra a diferença entre o padrão oscilatório magmático e o padrão irregular de zoneamento metamórfico foi bem caracterizado.

Nos grãos com padrão irregular de zoneamento podem estar relacionados ao hidrotermalismo associado à milonitização, já que o ponto em questão ocorre na borda leste do complexo aonde ocorrem zonas miloníticas e confirmados pelos estudos petrográficos aonde foram descritas fitas (*ribbons*) de quartzo, estruturas núcleos-manto com recristalização em grãos de quartzo.

Figura 4.3.5-1: Imagem de catodoluminescência com destaque para os grãos com evidências de fluidização.

Legenda: Amostra CPR 13, com evidências de fluidização (apontados pelo círculo amarelo). Fonte: A autora, 2016.

Para a amostra CPR 13 foram analisados dezenove grãos de zircão (Tabela 4.3.5-1). Após serem eliminados os grãos com resultados discordantes e/ou com erros individuais elevados, obteve-se uma discórdia que sugere idade de cristalização magmática em 2092 \pm 68 Ma (MSWD = 2,1) e aponta, idades de metamorfismo em 2092 \pm 15 (Figura 4.3.5-2). Os valores concordantes são entre 80 e 110%, porém poucos grãos podem apresentam valores até 150%. Já os erros assumem valores mais altos que nas demais amostras (até 27% em alguns casos), porém o valor de rho para esse *spots* permanecem próximos a um.

Tabela 4.3.5-1: Dados isotópicos U-Pb LA-ICP-MS da amostra CPR 13.

Grão	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 13 A 02	0,0009	68,67	205,04	271,71	0,75	3,4527	5,47	0,2204	4,43	0,81	0,1136	3,21	1283,97	56,91	1516,48	82,99	1858,08	59,62	69,10
CPR 13 A 03	0,0006	123,41	298,94	325,26	0,92	5,0056	2,43	0,2795	2,15	0,89	0,1299	1,12	1588,94	34,19	1820,27	44,18	2096,34	23,55	75,80
CPR 13 A 04	0,0010	38,61	13,25	393,55	0,03	0,7952	2,26	0,0966	1,89	0,83	0,0597	1,25	594,65	11,23	594,11	13,46	592,08	7,41	100,43
CPR 13 A 06	0,0047	5,92	3,34	59,60	0,06	0,8198	3,32	0,0986	1,74	0,52	0,0603	2,83	606,24	10,55	607,92	20,18	614,18	17,36	98,71
CPR 13 A 07	0,0019	38,07	31,48	112,51	0,28	5,8656	2,19	0,3359	1,90	0,87	0,1266	1,09	1867,06	35,52	1956,16	42,89	2051,81	22,38	91,00
CPR 13 A 08	0,0024	28,93	18,93	96,93	0,20	5,2292	2,86	0,3178	2,18	0,76	0,1193	1,85	1778,86	38,83	1857,39	53,10	1946,47	35,94	91,39
CPR 13 A 09	0,0088	4,67	2,27	46,91	0,05	0,8611	3,18	0,0991	2,07	0,65	0,0630	2,42	609,25	12,62	630,70	20,08	708,38	17,13	86,01
CPR 13 B 01	0,0085	3,59	3,12	37,94	0,08	0,7851	4,04	0,0947	2,19	0,54	0,0601	3,40	583,41	12,76	588,37	23,77	607,54	20,64	96,03
CPR 13 B 02	0,0014	60,64	182,73	297,15	0,61	3,1443	30,03	0,2454	9,87	0,33	0,0929	28,36	1414,90	139,59	1443,60	433,51	1486,12	421,51	95,21
CPR 13 B 03	0,0069	6,95	2,38	72,46	0,03	0,7864	2,96	0,0961	1,70	0,57	0,0593	2,43	591,52	10,05	589,11	17,45	579,83	14,06	102,02
CPR 13 B 04	0,0038	9,14	1,31	98,64	0,01	0,7783	2,59	0,0960	1,64	0,63	0,0588	2,00	590,95	9,70	584,50	15,11	559,53	11,18	105,62
CPR 13 B 05	0,0185	3,20	33,42	23,97	1,39	0,6893	6,76	0,0925	3,94	0,58	0,0541	5,50	570,21	22,48	532,39	36,01	373,42	20,53	152,70
CPR 13 B 08	0,0007	78,08	143,65	261,23	0,55	3,5649	12,61	0,1972	11,63	0,92	0,1311	4,87	1160,45	134,92	1541,76	194,37	2112,61	102,99	54,93
CPR 13 B 09	0,0032	50,41	97,21	228,41	0,43	3,2467	15,18	0,2287	9,15	0,60	0,1030	12,11	1327,58	121,49	1468,38	222,93	1678,33	203,31	79,10
CPR 13 D 01	0,0009	37,62	35,33	119,26	0,30	6,3207	4,77	0,3744	3,79	0,79	0,1224	2,91	2050,01	77,61	2021,33	96,51	1992,17	57,96	102,90
CPR 13 D 06	0,0004	90,54	53,62	224,34	0,24	7,1981	3,87	0,3890	3,65	0,94	0,1342	1,28	2118,41	77,40	2136,27	82,70	2153,49	27,57	98,37
CPR 13 D 07	0,0005	123,96	117,95	572,72	0,21	2,9028	6,56	0,1865	5,75	0,88	0,1129	3,15	1102,33	63,40	1382,63	90,68	1846,45	58,17	59,70
CPR 13 D 08	0,0008	59,33	154,91	552,04	0,28	0,8633	2,50	0,1016	1,45	0,58	0,0616	2,03	623,91	9,07	631,91	15,77	660,65	13,40	94,44
CPR 13 D 09	0,0004	142,00	171,00	519,41	0,33	3,4980	5,74	0,2113	5,12	0,89	0,1200	2,60	1235,95	63,28	1526,76	87,66	1956,85	50,84	63,16

Figura 4.3.5-2: Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 13.

Na tabela 4.3.5-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf da amostra CPR 13 que resultaram em valores de idade modelo TDM entre 1,96 a 3,79 e os valores de ϵ Hf variam entre -22,5 a 13,0 calculados para a idade U-Pb de 2176± 25. Já os valores de ϵ Hf calculados para a idade U-Pb de 600 ± 18, com valores entre -57,5 a -22,6 e valores de idade modelo T_{DM} entre 2,51 a 4,25.

A partir das observações dos resultados é possível interpretar a formação desta rocha a partir da mistura de duas fontes mantélica e crustal em um período de extração mantélica que se inicia no Arqueano indo até o Paleoproterozoico, período este onde a rocha foi cristalizada, demonstrada pela idade U-Pb. O evento metamórfico que atinge essa rocha no Neoproterozoico apresenta segundo os resultados retrabalhamento crustal e idade T_{DM} Arqueana.

Nas figuras 4.3.5-3 e 4.3.5-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismo dessa amostra respectivamente.

Amostra	Idade U-Pb Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	EHf (t)	±2SE	Idade TDM
CPR 13-A-03	2176± 25	0,281292	0,000074	0,000214	0,000007	0,281284	-3,8	0,1	2,84
CPR 13-A-08	2176± 25	0,281056	0,000278	0,000536	0,000026	0,281034	-12,7	0,6	3,29
CPR 13-A-09	2176± 25	0,281772	0,000094	0,000360	0,000007	0,281757	13,0	0,3	1,96
CPR 13-B-01	2176± 25	0,281311	0,000042	0,000020	0,000001	0,281311	-2,9	0,1	2,79
CPR 13-B-08	2176± 25	0,281051	0,000050	0,000858	0,000015	0,281015	-13,4	0,2	3,33
CPR 13-B-09	2176± 25	0,281008	0,000046	0,000325	0,000015	0,280994	-14,1	0,6	3,37
CPR 13-D-01	2176± 25	0,280818	0,000048	0,000334	0,000012	0,280804	-20,9	0,8	3,71
CPR 13-D-06	2176± 25	0,280819	0,000047	0,000483	0,000006	0,280799	-21,1	0,3	3,72
CPR 13-D-07	2176± 25	0,280925	0,000047	0,000964	0,000091	0,280885	-18,0	1,7	3,56
CPR 13-D-08	2176±25	0,280793	0,000062	0,000821	0,000008	0,280759	-22,5	0,2	3,79
CPR 13-A-03	600 ± 18	0,281292	0,000074	0,000214	0,000007	0,281290	-39,5	1,4	3,36
CPR 13-A-08	600 ± 18	0,281056	0,000278	0,000536	0,000026	0,281050	-48,0	2,5	3,78
CPR 13-A-09	600 ± 18	0,281772	0,000094	0,000360	0,000007	0,281768	-22,6	0,5	2,51
CPR 13-B-01	600 ± 18	0,281311	0,000042	0,000020	0,000001	0,281311	-38,8	1,6	3,32
CPR 13-B-08	600 ± 18	0,281051	0,000050	0,000858	0,000015	0,281041	-48,4	0,9	3,80
CPR 13-B-09	600 ± 18	0,281008	0,000046	0,000325	0,000015	0,281004	-49,7	2,3	3,86
CPR 13-D-01	600 ± 18	0,280818	0,000048	0,000334	0,000012	0,280814	-56,4	2,2	4,19
CPR 13-D-06	600 ± 18	0,280819	0,000047	0,000483	0,000006	0,280813	-56,4	0,8	4,20
CPR 13-D-07	600 ± 18	0,280925	0,000047	0,000964	0,000091	0,280914	-52,8	5,1	4,02
CPR 13-D-08	600 ± 18	0,280793	0,000062	0,000821	0,000008	0,280784	-57,5	0,6	4,25

Tabela 4.3.5-2: Resultados das análises Hf nos grãos de zircão da CPR 13.

Figura 4.3.5-3: Diagrama com valores de épsilon Hf vs. Tempo da amostra CPR 13.

Fonte: A autora, 2016.

Figura 4.3.5-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. tempo da amostra CPR 13.

Fonte: A autora, 2016.

4.3.6 Amostra CPR 20

A amostra CPR 20 está contida na Unidade Ortognaisse Granulítico (protomilonítico), próximo a zona de empurrão na borda oeste do Complexo Caparaó. O bandamento desta rocha é bem marcado, nele ocorrem de forma acentuada granadas poiquiloblásticas, biotitas sendo alteradas, cominuição de grãos de quartzo e plagioclásio, fitas (*ribbons*) de quartzo, entre outras estruturas.

A amostra CPR 20 apresenta morfologia dos grãos de zircão que varia de prismáticos bem formados (1:4) a cristais arredondados (1:1). A zonação irregular (interpretada como resultado do crescimento metamórfico ou crescimento durante o evento metamórfico) predomina em algumas famílias de zircões, podendo ocorrer também a zonação oscilatória (em áreas com preservação do núcleo com origem magmática). Grande quantidade de grãos nucleados são observados. Sendo vistos com zonação convoluta, outros homogêneo de pouca luminescência e ainda podem ocorrer com zonação oscilatória (Figura 4.3.6-1). Os resultados analíticos dos núcleos Paleoproterozóicos apresentam maior erro analítico, provavelmente devido a rehomogeneização isotópica, enquanto as bordas crescidas durante o evento metamórfico apresentam resultado analítico mais preciso com menor erro e maior concordância.

Figura 4.3.6-1-Imagem de catodoluminescência mostra a morfologia dos zircões com núcleos convolutos

Legendas: A morfologia dos zircões também mostra que raras vezes ocorrem com zonação oscilatória. Fonte: A autora, 2016.

Os dados analíticos obtidos na análise da amostra CPR 20 podem ser observados na tabela 4.2.2.6, com erros menores que 15 % e valores concordantes que variam de 90 a 100%. Selecionaram-se as medidas dos 21 spots com melhor coerência analítica da amostra, resultando na idade-concórdia de 2121±18 no intercepto superior, interpretado como idade de cristalização magmática e de 592±16 Ma no intercepto inferior, que indica a atuação do metamorfismo. Já valor de **MSWD** foi igual 4.9 (Figura 4.3.6-2). 0 а

Grão	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 20-A-1	0,0019	14,82	43,82	141,22	0,31	0,8076	3,15	0,0979	2,73	0,87	0,0598	1,57	602,08	16,42	601,11	18,93	597,47	9,40	100,77
CPR 20-A-3	0,0010	21,46	59,49	200,67	0,30	0,7973	3,34	0,0971	2,98	0,89	0,0595	1,51	597,62	17,78	595,31	19,86	586,51	8,85	101,89
CPR 20-A-4	0,0011	25,73	91,06	241,15	0,38	0,8015	3,05	0,0976	2,71	0,89	0,0596	1,41	600,06	16,24	597,67	18,24	588,60	8,32	101,95
CPR 20-A-8	0,0006	50,92	39,09	168,58	0,23	4,2963	5,47	0,2605	4,86	0,89	0,1196	2,50	1492,22	72,58	1692,66	92,60	1950,74	48,83	76,49
CPR 20-B-1	0,0029	16,81	87,63	148,55	0,59	0,8104	2,18	0,0981	1,26	0,58	0,0599	1,78	603,04	7,59	602,68	13,16	601,34	10,73	100,28
CPR 20-B-5	0,0018	20,32	54,98	196,90	0,28	0,8008	2,00	0,0970	0,97	0,48	0,0599	1,75	596,62	5,79	597,27	11,96	599,70	10,51	99,49
CPR 20-B-6	0,0016	19,59	105,73	175,65	0,60	0,7954	2,11	0,0966	1,26	0,60	0,0597	1,69	594,34	7,51	594,21	12,55	593,71	10,04	100,11
CPR 20-B-8	0,0015	32,46	39,60	96,64	0,41	5,3033	4,19	0,3073	3,96	0,94	0,1252	1,38	1727,32	68,41	1869,40	78,38	2031,25	27,96	85,04
CPR 20-C-1	0,0016	17,09	88,06	155,95	0,56	0,7796	2,23	0,0948	1,24	0,56	0,0596	1,85	584,05	7,22	585,26	13,02	589,98	10,91	98,99
CPR 20-C-4	0,0028	14,72	66,67	136,87	0,49	0,7772	2,08	0,0947	1,40	0,67	0,0595	1,53	583,14	8,18	583,87	12,14	586,69	9,00	99,40
CPR 20-C-5	0,0008	32,35	23,74	76,26	0,31	7,2210	2,07	0,3960	1,91	0,92	0,1323	0,80	2150,39	41,15	2139,09	44,36	2128,26	17,00	101,04
CPR 20-C-6	0,0016	20,23	97,44	183,11	0,53	0,7687	2,25	0,0928	1,63	0,73	0,0601	1,54	571,84	9,34	578,99	13,00	607,15	9,35	94,18
CPR 20-C-9	0,0006	55,41	47,20	222,43	0,21	3,3968	5,41	0,2146	5,05	0,93	0,1148	1,93	1253,44	63,30	1503,65	81,31	1876,47	36,29	66,80
CPR 20-D-2	0,0021	15,84	58,79	149,80	0,39	0,7977	2,00	0,0971	0,96	0,48	0,0596	1,76	597,61	5,76	595,52	11,93	587,57	10,33	101,71
CPR 20-D-3	0,0006	62,76	47,16	166,02	0,28	5,6246	1,86	0,3237	1,71	0,92	0,1260	0,73	1807,56	30,88	1919,87	35,66	2043,43	14,87	88,46
CPR 20-D-4	0,0021	15,61	92,64	133,97	0,69	0,8130	2,09	0,0991	1,15	0,55	0,0595	1,75	609,29	7,02	604,16	12,64	584,97	10,21	104,16
CPR 20-D-6	0,0027	11,44	5,20	109,11	0,05	0,8777	4,17	0,1059	3,26	0,78	0,0601	2,60	648,63	21,16	639,72	26,68	608,35	15,80	106,62
CPR 20-D-8	0,0017	18,42	32,75	174,29	0,19	0,8748	3,60	0,1043	2,52	0,70	0,0608	2,56	639,57	16,13	638,18	22,95	633,22	16,23	101,00
CPR 20-D-9	0,0005	79,69	172,13	171,25	1,01	6,1743	5,25	0,3489	5,00	0,95	0,1283	1,61	1929,34	96,44	2000,81	105,06	2075,45	33,38	92,96
CPR 20-B-9	0,0010	31,26	15,10	211,55	0,07	1,5513	14,34	0,1264	11,02	0,77	0,0890	9,18	767,45	84,60	951,00	136,40	1403,97	128,84	54,66
CPR 20-A-2	0,0004	61,09	36,87	314,20	0,12	2,6543	16,54	0,1801	15,82	0,96	0,1069	4,84	1067,45	168,88	1315,85	217,69	1747,20	84,51	61,10
Fonte: A a	autora, 20	016.																	

Figura 4.3.6-2: Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 20.

Na tabela 4.3.6-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf da amostra CPR 20 para o método U-Pb, que resultaram em valores de idade modelo TDM entre 2,13 a 2,74 Ga e valores de ε Hf variam entre -2,9 a 8,8 calculados para a idade U-Pb de 2121±18. Os resultados para a idade U-Pb de 596±16, mostra valores de idade modelo TDM entre 2,66 a 3,15 e valores de ε Hf variando entre -36,0 a -25,2.

Assim como a amostra CPR 13, a presente amostra cristalizada no Paleoproterozoico foi formada a partir de fontes mantélica e crustais, extraídas do manto no período Arqueano ao Paleoproterozoico. O metamorfismo dessa rocha marca um período de retrabalhamento crustal evidenciado pelos altos valores de EHf negativos e com idade de extração mantélica arqueana.

Nas figuras 4.3.6-3 e 4.3.6-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismo dessa amostra respectivamente.

Fonte: A autora, 2016.

Amostra	Idade U-Pb Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	EHf (t)	±2SE	Idade TDM
CPR 20-A-01	$2121{\pm}18$	0,281678	0,000055	0,000042	0,000001	0,281676	8,8	0,3	2,13
CPR 20-A-08	2121 ± 18	0,281455	0,000042	0,001072	0,000111	0,281412	-0,6	0,1	2,62
CPR 20-B-08	2121 ± 18	0,281409	0,000045	0,000427	0,000133	0,281392	-1,3	0,4	2,66
CPR 20-C-05	2121 ± 18	0,281384	0,000038	0,000943	0,000042	0,281345	-2,9	0,1	2,74
CPR 20-C-09	2121 ± 18	0,281565	0,000043	0,000566	0,000039	0,281542	4,1	0,3	2,38
CPR 20-D-02	2121 ± 18	0,281659	0,000031	0,000047	0,000002	0,281657	8,1	0,4	2,17
CPR 20-D-03	2121 ± 18	0,281426	0,000049	0,001052	0,000103	0,281383	-1,6	0,2	2,67
CPR 20-D-09	2121 ± 18	0,281460	0,000056	0,000841	0,000060	0,281426	-0,1	0,0	2,60
CPR 20-B-09	2121 ± 18	0,281485	0,000037	0,000449	0,000075	0,281467	1,4	0,2	2,52
CPR 20-A-02	2121±18	0,281523	0,000044	0,000736	0,000089	0,281493	2,3	0,3	2,47
CPR 20-A-01	596 ± 16	0,281678	0,000055	0,000042	0,000001	0,281677	-25,2	0,8	2,66
CPR 20-A-08	596 ± 16	0,281455	0,000042	0,001072	0,000111	0,281442	-33,5	3,5	3,08
CPR 20-B-08	596 ± 16	0,281409	0,000045	0,000427	0,000133	0,281404	-34,9	10,9	3,15
CPR 20-C-05	596 ± 16	0,281384	0,000038	0,000943	0,000042	0,281372	-36,0	1,7	3,21
CPR 20-C-09	596 ± 16	0,281565	0,000043	0,000566	0,000039	0,281558	-29,4	2,1	2,88
CPR 20-D-02	596 ± 16	0,281659	0,000031	0,000047	0,000002	0,281658	-25,8	1,4	2,70
CPR 20-D-03	596 ± 16	0,281426	0,000049	0,001052	0,000103	0,281413	-34,5	3,4	3,13
CPR 20-D-09	596 ± 16	0,281460	0,000056	0,000841	0,000060	0,281450	-33,2	2,4	3,07
CPR 20-B-09	596 ± 16	0,281485	0,000037	0,000449	0,000075	0,281480	-32,2	5,4	3,02
CPR 20-A-02	596 ± 16	0,281523	0,000044	0,000736	0,000089	0,281514	-30,9	3,8	2,95

Tabela 4.3.6-2: Resultados das análises Hf nos grãos de zircão da CPR 20.

Figura 4.3.6-3: Diagrama com valores de épsilon Hf vs. tempo da amostra CPR 20.

Fonte: A autora, 2016.

Figura 4.3.6-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. tempo da amostra CPR 20.

Fonte: A autora, 2016.

4.3.7 Amostra CPR 18

A amostra CPR 18 está contida na Unidade Ortognaisse Granulítico, na porção Noroeste do Complexo Caparaó. Petrograficamente é observada uma rocha félsica bastante deformada, de composição granítica, com muita ocorrência de granadas. Minerais máficos como ortopiroxênio e hornblendas não são vistos, apenas biotitas que se encontram alteradas e poucos minerais opacos.

A partir das imagens de CL foi possível individualizar dois grupos de grãos, o primeiro de cristais de zircão prismáticos, alongados, com padrão largura/comprimento (1:3 a 1:4) e o segundo grupo de grãos zircão com as arestas terminações arredondadas que ocorrem em maior frequência. As texturas dos grãos zircão são oscilatórias (limites entre zonas claras e escuras retilíneas e regulares) ou convolutas (com limites entre zonas claras e escuras curvas e irregulares), porém algumas regiões com padrão homogêneo cinza claro (Figura 4.3.7-1).

Figura 4.3.7-1- Catodoluminescência mostra zircões com zonação oscilatória e convoluta

Fonte: A autora, 2016.

No diagrama da concórdia nota-se que os *spots* com boa consistência analítica se alinham numa reta discórdia, caracterizando evento de perda episódica de Pb (Figura 4.3.7-2). Esta discórdia define um intercepto superior em 2060±39 Ma, interpretado como idade de cristalização magmática, e um intercepto inferior em 584±29 Ma, que indica a atuação do metamorfismo brasiliano. Já o valor de MSWD foi igual a 12. Os dados analíticos obtidos com essa análise podem ser observados na tabela 4.3.7-1, como por exemplo os valores concordantes que variam de 70 a 101% e erros analíticos menores que 10%.

Tabela 4.3.7-1: Dados isotópicos U-Pb LA-ICP-MS da amostra CPR 18.

Grão	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 18- A-2	0,0007	30,91	6,21	312,92	0,02	0,8179	1,25	0,0986	0,88	0,71	0,0602	0,88	606,28	5,33	606,87	7,57	609,07	5,38	99,54
CPR 18- A-3	0,0015	14,19	13,24	37,04	0,36	6,2860	3,78	0,3654	3,62	0,96	0,1248	1,10	2007,61	72,59	2016,50	76,19	2025,62	22,21	99,11
CPR 18- A-4	0,0011	16,14	23,88	162,05	0,15	0,7957	4,27	0,0954	1,80	0,42	0,0605	3,87	587,20	10,56	594,40	25,37	621,99	24,07	94,41
CPR 18- A-6	0,0013	15,44	40,28	65,10	0,62	3,2058	8,60	0,2182	7,38	0,86	0,1066	4,41	1272,36	93,93	1458,57	125,45	1741,34	76,85	73,07
CPR 18- B-1	0,0003	41,42	37,40	409,36	0,09	0,8501	1,58	0,1028	1,26	0,79	0,0600	0,97	630,72	7,92	624,71	9,90	602,99	5,83	104,60
CPR 18- B-2	0,0023	6,14	31,02	55,84	0,56	0,8390	2,87	0,0977	1,63	0,57	0,0623	2,36	601,07	9,81	618,62	17,74	683,35	16,11	87,96
CPR 18- B-3	0,0011	20,45	83,57	191,28	0,44	0,8079	1,65	0,0979	0,85	0,51	0,0598	1,42	602,16	5,12	601,30	9,93	598,05	8,47	100,69
CPR 18- B-4	0,0018	10,50	20,61	52,23	0,39	2,4143	7,20	0,1707	6,54	0,91	0,1026	3,02	1015,75	66,41	1246,85	89,80	1671,69	50,50	60,76
CPR 18- B-5	0,0004	74,33	68,83	254,14	0,27	4,0381	9,94	0,2484	9,50	0,96	0,1179	2,94	1430,23	135,87	1641,91	163,26	1924,68	56,52	74,31
CPR 18- C-3	0,0010	12,89	29,93	119,17	0,25	0,8345	3,27	0,1013	2,83	0,87	0,0597	1,64	622,10	17,61	616,09	20,15	594,07	9,73	104,72
CPR 18- C-4	0,0008	24,36	22,69	100,32	0,23	3,2049	6,32	0,2132	5,91	0,94	0,1090	2,22	1245,66	73,67	1458,35	92,14	1783,49	39,65	69,84
CPR 18- C-5	0,0015	15,58	34,94	147,43	0,24	0,8102	1,81	0,0983	1,18	0,65	0,0598	1,37	604,49	7,14	602,59	10,90	595,44	8,15	101,52
CPR 18- C-6	0,0025	5,70	18,42	46,91	0,39	1,0625	6,28	0,1089	3,02	0,48	0,0708	5,51	666,12	20,10	735,04	46,19	951,26	52,43	70,03

Tabela 4.3.7-1: Dados isotópicos	U-Pb LA-ICP	-MS da amostra	CPR 18.	(Conclusão)
----------------------------------	-------------	----------------	---------	-------------

CPR 18- D-2	0,0063	5,21	18,07	41,84	0,43	1,1685	10,74	0,1142	7,17	0,67	0,0742	8,00	697,23	50,02	785,93	84,43	1046,70	83,70	66,61
CPR 18- D-3	0,0008	26,27	43,04	80,85	0,53	4,4560	6,23	0,2646	5,98	0,96	0,1221	1,75	1513,51	90,54	1722,81	107,39	1987,46	34,82	76,15
CPR 18- D-7	0,0008	32,10	44,37	117,81	0,38	4,2276	4,23	0,2651	3,74	0,88	0,1157	1,98	1515,90	56,77	1679,40	71,12	1890,17	37,37	80,20
CPR 18- D-8	0,0010	21,71	29,72	136,21	0,22	1,7337	5,62	0,1328	3,63	0,65	0,0947	4,29	803,86	29,16	1021,11	57,40	1521,63	65,34	52,83
CPR 18- D-4	0,0034	8,17	39,75	79,93	0,50	0,7766	3,25	0,0917	1,49	0,46	0,0614	2,89	565,81	8,41	583,56	18,98	653,23	18,90	86,62
CPR 18- D-5	0,0016	11,39	64,12	109,23	0,59	0,7647	2,22	0,0921	1,41	0,64	0,0602	1,71	567,96	8,03	576,73	12,78	611,44	10,44	92,89

Figura 4.3.7-2: Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 18.

Na tabela 4.3.7-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf CPR 18 para o método U-Pb. As análises Lu-Hf resultaram em valores de idade modelo TDM entre 2,13 a 2,80 e os valores de ϵ Hf variam entre -4,9 a 7,9 calculados para a idade U-Pb de 2060±39. A tabela 4.3.7-2 também mostra os valores de ϵ Hf calculados para a idade U-Pb de 584±29, com valores entre -36,00 a -25,2 e valores de idade modelo TDM entre 2,65 a 3,27.

A última amostra que apresenta no diagrama da concórdia idades de cristalização e metamorfismo, segue o padrão das demais amostras onde no Paleoproterozoico ocorreu sua cristalização a partir de magmas oriundos de fontes mantélicas e crustais, que foram depletadas do manto no período do Arqueano ao Paleoproterozoico. Já o Metamorfismo datado nesta rocha indica com os dados Lu-Hf um retrabalhamento neste período das rochas já formadas (paleoproterozoicas) com afinidade crustal.

Nas figuras 4.3.7-3 e 4.3.7-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismo dessa amostra respectivamente.

Amostra	Idade U-Pb	17(177		17(177		¹⁷⁶ Hf/ ¹⁷⁷ Hf	EHf		Idade
	Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	(t)	(t)	±2SE	TDM
CPR 18-A-04	2060 ± 39	0,281695	0,000038	0,000108	0,000006	0,281691	7,9	0,4	2,13
CPR 18-A-02	2060±39	0,281352	0,000040	0,000555	0,000006	0,281330	-4,9	0,1	2,80
CPR 18-A-03	2060±39	0,281452	0,000051	0,000483	0,000007	0,281434	-1,2	0,0	2,61
CPR 18-A-06	2060±39	0,281440	0,000050	0,000817	0,000009	0,281408	-2,1	0,0	2,65
CPR 18-B-01	2060± 39	0,281621	0,000037	0,000113	0,000006	0,281616	5,3	0,3	2,27
CPR 18-C-03	2060±39	0,281547	0,000033	0,000088	0,000010	0,281543	2,7	0,3	2,40
CPR 18-C-04	2060±39	0,281451	0,000040	0,000264	0,000015	0,281441	-1,0	0,1	2,59
CPR 18-D-07	2060±39	0,281421	0,000034	0,000622	0,000005	0,281397	-2,5	0,0	2,67
CPR 18-D-08	2060±39	0,281419	0,000036	0,000530	0,000013	0,281398	-2,5	0,1	2,67
CPR 18-D-03	2060±39	0,281408	0,000033	0,000822	0,000018	0,281376	-3,3	0,1	2,71
CPR 18-A-04	584 ± 29	0,281678	0,000055	0,000042	0,000001	0,281677	-25,2	0,8	2,65
CPR 18-A-02	584 ± 29	0,281455	0,000042	0,001072	0,000111	0,281442	-33,5	3,5	3,27
CPR 18-A-03	584 ± 29	0,281409	0,000045	0,000427	0,000133	0,281404	-34,9	10,9	3,09
CPR 18-A-06	584 ± 29	0,281384	0,000038	0,000943	0,000042	0,281372	-36,0	1,7	3,11
CPR 18-B-01	584 ± 29	0,281565	0,000043	0,000566	0,000039	0,281558	-29,4	2,1	2,78
CPR 18-C-03	584 ± 29	0,281659	0,000031	0,000047	0,000002	0,281658	-25,8	1,4	2,91
CPR 18-C-04	584 ± 29	0,281426	0,000049	0,001052	0,000103	0,281413	-34,5	3,4	3,08
CPR 18-D-07	584 ± 29	0,281460	0,000056	0,000841	0,000060	0,281450	-33,2	2,4	3,14
CPR 18-D-08	584 ± 29	0,281485	0,000037	0,000449	0,000075	0,281480	-32,2	5,4	3,15
CPR 18-D-03	584 ± 29	0,281523	0,000044	0,000736	0,000089	0,281514	-30,9	3,8	3,17

Tabela 4.3.7-2: Resultados das análises Hf nos grãos de zircão da CPR 18.

Figura 4.3.7-3: Diagrama com valores de épsilon Hf vs. Tempo da amostra CPR 18.

Figura 4.3.7-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. Tempo da amostra CPR 18

4.3.8 Amostra CPR 05

A amostra CPR 05 faz parte da Unidade Ortognaisse Migmatítico, mais especificamente a amostra em questão representa a porção do leucossoma dessa unidade. Suas características petrográficas são de uma rocha félsica, com cerca de 85% de minerais félsicos (quartzo, plagioclásio e k-feldspatos) e apenas 15% de máficos (ortopiroxênio e hornblendas). A rocha apresenta-se maciça, sem direcionamento minerálico.

Os grãos de zircão da amostra CPR 05 apresentam padrão de comprimento/largura de 1:1 a 1:5, sempre com terminações arredondadas, euédricas a subeuédricas. Alguns grãos de zircão apresentam faces irregulares provavelmente resultado de fraturas durante o processo de britagem e moagem. Observam-se núcleos cinza escuro e sobrecrescimento cinza claro. Os núcleos dos grãos de zircão apresentam, quando observados s imagens de CL zonação oscilatória (magmática) e irregular (metamórfica). As Bordas dos grãos de zircão apresentam cor cinza claro e indicam idade Neoproterozoica (Figura 4.3.8-1).

Figura 4.3.8-1: Imagem de CL ilustrando os padrões que ocorrem na amostra CPR 05.

Legenda: zoneamentos oscilatório, irregulares e sobrecrescimentos metamórficos ocorrem nesta amostra. Fonte: A autora, 2016.

Tabela 4.3.8-1: Dados isotópicos U-Pb LA-ICP-MS da amostra CPR 05.
--

Grão	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 05 A 01	0,0020	21,2318	43,8551	57,3900	0,7642	4,4883	3,88	0,3003	3,45	0,89	0,1084	1,77	1692,88	58,39	1728,81	67,02	1772,57	31,36	95,50
CPR 05 A 06	0,0022	18,0592	37,2247	69,2040	0,5379	3,1204	8,95	0,2279	8,53	0,95	0,0993	2,73	1323,66	112,89	1437,73	128,73	1610,78	43,91	82,18
CPR 05 B 01	0,0015	26,2512	29,6124	115,7817	0,2558	2,5935	3,35	0,2003	2,71	0,81	0,0939	1,96	1177,07	31,96	1298,80	43,51	1506,00	29,56	78,16
CPR 05 B 02	0,0015	22,3505	38,6726	80,9215	0,4779	3,1805	5,36	0,2280	4,73	0,88	0,1012	2,51	1323,83	62,64	1452,44	77,82	1646,01	41,37	80,43
CPR 05 B 03	0,0030	10,4733	37,0312	93,3103	0,3969	0,8148	4,73	0,0978	3,80	0,80	0,0604	2,83	601,73	22,85	605,14	28,64	617,95	17,46	97,37
CPR 05 B 04	0,0018	15,3003	44,2929	55,6520	0,7959	3,0066	6,06	0,2192	5,58	0,92	0,0995	2,36	1277,56	71,34	1409,29	85,45	1614,49	38,15	79,13
CPR 05 B 05	0,0016	13,5467	59,7886	113,1110	0,5286	0,9723	6,12	0,1069	4,87	0,80	0,0660	3,71	654,50	31,87	689,67	42,22	806,13	29,90	81,19
CPR 05 B 06	0,0029	12,9175	120,6221	99,4137	1,2133	0,8222	5,09	0,0987	4,16	0,82	0,0604	2,93	606,90	25,26	609,28	31,03	618,14	18,14	98,18
CPR 05 C 01	0,0050	8,7781	26,2272	31,0527	0,8446	3,3008	5,10	0,2407	4,50	0,88	0,0995	2,41	1390,38	62,53	1481,25	75,61	1613,92	38,97	86,15
CPR 05 C 02	0,0006	63,4370	134,3388	184,0162	0,7300	3,9449	4,02	0,2710	3,59	0,89	0,1056	1,81	1545,67	55,49	1622,95	65,25	1724,66	31,23	89,62
CPR 05 C 03	0,0009	36,6988	51,9238	110,4208	0,4702	4,2945	2,88	0,2938	2,37	0,82	0,1060	1,64	1660,74	39,35	1692,30	48,73	1731,63	28,33	95,91
CPR 05 C 04	0,0013	35,7329	85,7200	124,6384	0,6877	2,9817	7,40	0,2148	6,50	0,88	0,1007	3,53	1254,09	81,53	1402,95	103,78	1637,00	57,76	76,61
CPR 05 C 05	0,0013	25,2887	44,6976	73,9265	0,6046	4,1999	3,26	0,2852	2,78	0,85	0,1068	1,70	1617,57	44,94	1674,01	54,57	1745,51	29,75	92,67
CPR 05 C 09	0,0013	28,4054	63,3692	89,5126	0,7079	3,6112	3,06	0,2520	2,54	0,83	0,1039	1,71	1448,65	36,76	1552,00	47,53	1695,69	29,08	85,43
CPR 05 D 02	0,0048	13,0239	62,2470	67,8242	0,9178	1,8244	6,06	0,1523	4,34	0,72	0,0869	4,23	914,11	39,72	1054,26	63,90	1357,20	57,35	67,35
CPR 05 D 04	0,0017	32,2126	178,5433	156,0516	1,1441	1,8323	4,88	0,1522	4,25	0,87	0,0873	2,39	913,08	38,82	1057,11	51,56	1367,90	32,69	66,75
CPR 05 E 01	0,0045	15,1458	34,2522	43,0739	0,7952	4,2435	3,74	0,2889	3,08	0,82	0,1065	2,12	1636,02	50,41	1682,49	62,97	1740,92	36,98	93,97
CPR 05 E 02	0,0023	19,5472	42,8245	61,8038	0,6929	3,6866	2,41	0,2577	1,66	0,69	0,1038	1,74	1477,89	24,54	1568,47	37,74	1692,60	29,47	87,31
CPR 05 E 05	0,0006	115,9084	250,8930	379,0879	0,6618	3,5415	2,88	0,2494	2,63	0,91	0,1030	1,17	1435,60	37,71	1536,54	44,21	1678,37	19,71	85,54
CPR 05 E 06	0,0060	9,7533	67,7314	87,4319	0,7747	0,8383	5,35	0,0980	3,27	0,61	0,0620	4,24	602,96	19,70	618,19	33,07	674,34	28,56	89,41
CPR 05 E 07	0,0034	14,0718	48,2347	69,6319	0,6927	2,1763	2,94	0,1720	2,21	0,75	0,0917	1,94	1023,34	22,66	1173,51	34,51	1462,19	28,30	69,99

Tabela 4.3.8	8-1: Dados	s isotópico	os U-Pb LA	-ICP-MS	da amos	tra CPR	05. (Co	nclusão)											
CPR 05 E 09	0,0008	64,5110	123,3785	183,1620	0,6736	4,1186	4,33	0,2852	4,21	0,97	0,1047	1,03	1617,57	68,02	1658,00	71,78	1709,60	17,57	94,62
CPR 05 E 08	0,0011	49,9651	98,1058	138,5414	0,7081	4,5655	3,85	0,3119	3,51	0,91	0,1062	1,60	1749,99	61,35	1743,00	67,14	1734,62	27,70	100,89

Para a amostra CPR 05 foram analisados 23 grãos de zircão (Tabela 4.3.8-2). Os erros analíticos dessa amostram são menores que 5% e as concordâncias variam de 70 a 105%. Após serem eliminados os grãos com resultados discordantes e/ou com erros individuais elevados, obteve-se uma discórdia que sugere idade de cristalização magmática em 1775 \pm 13 Ma (MSWD = 1,03) e aponta idades de metamorfismo em 592 \pm 15 (Figura 4.3.8-2).

Figura 4.3.8-2: Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 05.

Fonte: A autora, 2016.

Na tabela 4.3.8-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf da amostra CPR 05 para o método U-Pb. As análises Lu-Hf resultaram em valores de idade modelo TDM entre 2,88 a 3,22 e os valores de ε Hf variam entre -18 a -11 calculados para a idade U-Pb de 1775±13. Os valores de ε Hf calculados para a idade U-Pb de 592±15, com valores entre -36,00 a -25,2 e valores de idade modelo TDM entre 2,88 a 3,61.

A rocha em questão ao contrário das anteriores foi cristalizada no Estateriano, a partir de uma fonte magmática crustal, sem contribuição mantélica. Seu período de extração mantélica é muito mais antigo a sua cristalização, datando o Arqueano. Quando ocorre o metamorfismo nessa rocha relacionado ao Evento Brasiliano no Neoproterozoico, o mesmo padrão de retrabalhamento crustal é observado em relação às amostras descritas anteriormente. O valor de extração mantélica ocorreu no período do Arqueano ao Paleopreterozoico. Nas figuras 4.3.8-3 e 4.3.8-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para as idades de cristalização e de metamorfismos dessas amostras respectivamente.

Amostra	Idade U-Pb Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	EHf (f)	±2SE	Idade TDM
CPR 05-A-01	1775±13	0,281275	0,000082	0,000319	0,000011	0,281264	-13,8	0,5	3.02
CPR 05-A-06	1775 ± 13	0,281254	0,000038	0,000418	0,000004	0,281240	-14,7	0,2	3,02
CPR 05-B-01	1775 ± 13	0,281350	0,000047	0,000204	0,000016	0,281343	-11,0	0,9	2.00
CPR 05-B-04	1775±13	0,281247	0,000046	0,000464	0,000027	0,281231	-15,0	0,9	2,00
CPR 05-C-02	1775±13	0,281255	0,000037	0,000504	0,000014	0,281238	-14,7	0,4	3,00
CPR 05-C-03	1775 ± 13	0,281260	0,000047	0,001033	0,000058	0,281225	-15,2	0,9	3,07
CPR 05-C-05	1775 ± 13	0,281301	0,000043	0,000539	0,000032	0,281283	-13,1	0,8	3,09
CPR 05-C-09	1775±13	0,281229	0,000039	0,000665	0,000029	0,281207	-15,8	0,7	2,99
CPR 05-E-05	1775±13	0,281233	0,000034	0,000557	0,000013	0,281214	-15,6	0,4	3,13
CPR 05-E-07	1775±13	0,281309	0,000036	0,000290	0,000007	0,281299	-12,6	0,3	3,11
	502+15								2,96
CPR 05-A-01	592±15	0,281275	0,000082	0,000319	0,000011	0,281264	-13,8	0,5	3,02
CPR 05-A-06	592±15	0,281254	0,000038	0,000418	0,000004	0,281240	-14,7	0,2	3,07
CPR 05-B-01	592±15	0,281350	0,000047	0,000204	0,000016	0,281343	-11,0	0,9	2,88
CPR 05-B-04	592±15	0,281247	0,000046	0,000464	0,000027	0,281231	-15,0	0,9	3,08
CPR 05-C-02	592±15	0,281255	0,000037	0,000504	0,000014	0,281238	-14,7	0,4	3,07
CPR 05-C-03	592±15	0,281260	0,000047	0,001033	0,000058	0,281225	-15,2	0,9	3,09
CPR 05-C-05	592±15	0,281301	0,000043	0,000539	0,000032	0,281283	-13,1	0,8	2,99
CPR 05-C-09	592±15	0,281229	0,000039	0,000665	0,000029	0,281207	-15,8	0,7	3,13
CPR 05-E-05	592±15	0,281233	0,000034	0,000557	0,000013	0,281214	-15,6	0,4	3,11
CPR 05-E-07	592 ± 15	0,281309	0,000036	0,000290	0,000007	0,281299	-12,6	0,3	2,96
CPR 05-B-02	1775±13	0.281203	0.000047	0.000499	0.000010	0.281186	-16.6	0.3	3.16
CPR 05-B-05	1775±13	0.281193	0.000045	0.000432	0.000016	0.281179	-16.8	0.6	3.18
CPR 05-B-06	$1775{\pm}~13$	0.281154	0.000078	0.000568	0.000001	0.281135	-18.4	0.0	3.26
CPR 05-C-04	1775 ± 13	0.281172	0.000049	0.000473	0.000006	0.281156	-17.6	0.2	3.22
CPR 05-D-02	$1775{\pm}~13$	0.281302	0.000058	0.000356	0.000019	0.281290	-12 9	0.7	2.98
CDR 05 D 04	1775±13	0.201302	0.000046	0.000520	0.000019	0.201220	16.0	0,7	2,20
CPK 05-D-04	1775±13	0,281220	0,000046	0,000520	0,00019	0,281203	-10,0	0,0	3,13
CPR 05-E-06	1775±13	0,281202	0,000038	0,000509	0,000013	0,281185	-16,6	0,4	3,17
CPR 05-E-09	1	0,281216	0,000029	0,000416	0,000011	0,281202	-16,0	0,4	3,14

Tabela 4.3.8-2: Resultados das análises Hf nos grãos de zircão da CPR 05.

CPR 05-E-08	1775±13	0,281233	0,000041	0,000558	0,000046	0,281215	-15,6	1,3	3,11
CPR 05-E-07	$1775{\pm}~13$	0,281238	0,000038	0,000558	0,000028	0,281219	-15,4	0,8	3,10
CPR 05-B-02	592±15	0,281203	0,000047	0,000499	0,000010	0,281198	-43,0	0,9	3,53
CPR 05-B-05	592 ± 15	0,281193	0,000045	0,000432	0,000016	0,281188	-43,3	1,6	3,54
CPR 05-B-06	592±15	0,281154	0,000078	0,000568	0,000001	0,281148	-44,8	0,1	3,61
CPR 05-C-04	592±15	0,281172	0,000049	0,000473	0,000006	0,281166	-44,1	0,6	3,58
CPR 05-D-02	592±15	0,281302	0,000058	0,000356	0,000019	0,281298	-39,4	2,1	3,35
CPR 05-D-04	$592{\pm}15$	0,281220	0,000046	0,000520	0,000019	0,281214	-42,4	1,6	3,50
CPR 05-E-06	$592{\pm}15$	0,281202	0,000038	0,000509	0,000013	0,281197	-43,0	1,1	3,53
CPR 05-E-09	592 ± 15	0,281216	0,000029	0,000416	0,000011	0,281211	-42,5	1,1	3,50
CPR 05-E-08	592 ± 15	0,281233	0,000041	0,000558	0,000046	0,281227	-41,9	3,5	3,47
CPR 05-E-07	592±15	0,281238	0,000038	0,000558	0,000028	0,281231	-41,8	2,1	3,47

Tabela 4.3.8-2: Resultados das análises Hf nos grãos de zircão da CPR 05. (Conclusão)

Fonte: A autora, 2016.

Figura 4.3.8-3: Diagrama com valores de épsilon Hf vs. tempo da amostra CPR 05.

Figura 4.3.8-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. Tempo da amostra CPR 05.

4.3.9 <u>Amostra CPR 02</u>

A amostra CPR 02, assim como a CPR 08, está contida em uma das unidades encaixante do Complexo Caparaó, a Suíte Galiléia, representada por granitoides foliados/deformados. Composta por quartzo, plagioclásio, k-feldspato marcando o bandamento félsico e bandas máficas constituídas em sua maioria por biotitas, poucos ortopiroxênios e clinopiroxênio são vistos. Contatos variam de serrilhados a interlobados.

A amostra CPR 02 apresenta dois grupos de grão de zircão com morfologias distintas. O primeiro grupo é formado por grãos alongados (1:4 a 1:5), apresentam terminações piramidais, mas na maioria das vezes arredondadas. As imagens de CL indicam núcleos com zonação oscilatória com limites de camadas cinza claro e cinza escuro paralelas e raros padrões concêntricos. Os zircões desse grupo mais alongados tendem a estar fraturados decorrente do processo de britagem e moagem (Figura 4.3.9-1).

O segundo grupo é composto por grãos arredondados e raramente subedrais e apresentam núcleos com zonação observados nas imagens CL com geometria concêntrica onde as zonas de crescimento mostram os limites dos grãos durante suas fases de crescimento.

Figura 4.3.9-1: A imagem de CL mostrando grãos alongados e arredondados e suas respectivas texturas.

Fonte: A autora, 2016.

Grão	<i>f</i> 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb/ ²³⁸ U	±	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±	⁰⁶ Pb/ ²³⁸ U	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁷ Pb/ ²⁰⁶ Pb	±	Concordância (%)
CPR 02 A 07	0,0019	9,8021	20,1181	94,4160	0,2131	0,8058	2,91	0,0971	2,32	0,80	0,0602	1,76	597,13	13,85	600,10	17,47	611,34	10,75	97,68
CPR 02 B 04	0,0015	15,7166	45,9183	147,3200	0,3117	0,8647	4,41	0,1013	3,96	0,90	0,0619	1,94	622,12	24,62	632,66	27,88	670,51	12,99	92,78
CPR 02 B 07	0,0019	9,8021	20,1181	94,4160	0,2131	0,8058	2,91	0,0971	2,32	0,80	0,0602	1,76	597,13	13,85	600,10	17,47	611,34	10,75	97,68
CPR 02 D 01	0,0024	12,5068	167,5575	88,0591	1,9028	0,8073	3,01	0,0968	2,48	0,82	0,0605	1,71	595,66	14,77	600,96	18,10	621,00	10,62	95,92
CPR 02 D 03	0,0045	9,1581	133,9763	62,4747	2,1445	0,7898	3,52	0,0948	2,52	0,72	0,0604	2,45	584,03	14,74	591,03	20,78	618,00	15,12	94,50
CPR 02 D 04	0,0024	11,1133	41,3875	101,3125	0,4085	0,8463	2,85	0,1015	2,34	0,82	0,0605	1,62	623,33	14,61	622,61	17,73	620,01	10,02	100,54
CPR 02 D 05	0,0068	8,7374	87,2067	64,3291	1,3556	0,8576	4,56	0,1012	3,20	0,70	0,0615	3,25	621,37	19,90	628,83	28,67	655,74	21,28	94,76
CPR 02 D 06	0,0042	11,5678	105,0815	89,4379	1,1749	0,8316	3,28	0,0993	2,81	0,86	0,0607	1,69	610,39	17,16	614,51	20,15	629,75	10,64	96,92
CPR 02 D 07	0,0041	15,3415	179,2838	103,7617	1,7278	0,9104	5,25	0,1075	4,74	0,90	0,0614	2,27	658,41	31,19	657,25	34,53	653,29	14,84	100,78
CPR 02 D 08	0,0041	10,1257	98,6140	75,1245	1,3127	0,8643	3,23	0,1024	2,45	0,76	0,0612	2,10	628,44	15,43	632,46	20,42	646,82	13,57	97,16
CPR 02 D 09	0,0035	13,6635	131,9712	104,0952	1,2678	0,8651	3,04	0,1033	2,53	0,83	0,0607	1,69	633,67	16,02	632,92	19,24	630,23	10,65	100,55
CPR 02 E 05	0,0040	7,4764	50,8550	65,6661	0,7744	0,7802	2,53	0,0941	1,77	0,70	0,0602	1,80	579,51	10,27	585,59	14,81	609,24	11,00	95,12
CPR 02 E 06	0,0017	11,7581	72,7565	97,6292	0,7452	0,8169	3,86	0,0979	3,10	0,80	0,0605	2,30	601,99	18,69	606,31	23,41	622,49	14,29	96,71
CPR 02 F 02	0,0015	14,8091	117,6891	120,3255	0,9781	0,8282	2,22	0,0997	1,56	0,70	0,0602	1,58	612,82	9,53	612,63	13,60	611,96	9,70	100,14
CPR 02 F 04	0,0017	11,0709	70,7861	87,9582	0,8048	0,9044	3,26	0,1083	2,71	0,83	0,0606	1,80	662,63	17,98	654,08	21,30	624,71	11,24	106,07
CPR 02 F 05	0,0057	5,7484	43,8644	48,8824	0,8973	0,7936	3,14	0,0954	2,02	0,64	0,0603	2,41	587,65	11,85	593,24	18,64	614,68	14,81	95,60
CPR 02 F 07	0,0033	11,2668	162,5382	75,0497	2,1657	0,8338	3,28	0,0990	2,39	0,73	0,0611	2,25	608,67	14,56	615,73	20,21	641,81	14,41	94,84
CPR 02 F 08	0,0023	10,7178	34,7886	95,0067	0,3662	0,8617	2,16	0,1026	1,59	0,73	0,0609	1,47	629,74	9,98	631,03	13,64	635,68	9,34	99,06
CPR 02 F 09	0,0022	26,6308	342,8422	171,6371	1,9975	0,8305	3,06	0,0992	2,63	0,86	0,0607	1,56	609,53	16,02	613,87	18,76	629,94	9,83	96,76

Tabela 4.3.9-1: Dados isotópicos U-Pb LA-ICP-MS da amostra CPR 02.

Os valores das análises U-Pb obtidos nesta amostra se encontram na tabela 4.3.9-1, com erros analíticos menores que 5% e concordâncias que variam próximas a 100%. Para esta amostra foram realizados 20 *spots*, sendo estes concordantes ou que plotaram próximas a curva da concórdia gerando uma população com idade de 629.3 \pm 8.8 marcando o intercepto inferior e o evento metamórfico da região. O MSWD foi de aproximadamente 60.80 (Figura 4.3.9-2).

Figura 4.3.9-2: Diagrama discórdia-concórdia U/Pb LA-ICP-MS obtido na amostra CPR 02.

Fonte: A autora, 2016.

Na tabela 4.3.9-2 são apresentados os resultados analíticos dos isótopos de Lu e Hf da amostra CPR 02 para o método U-Pb. As análises Lu-Hf resultaram em valores de idade modelo TDM entre 2,79 a 2,84 e os valores de ϵ Hf variam entre -25,5 a -31,3 calculados para a idade U-Pb de 629±9.

Em relação à cristalização dessa rocha, os dados de U-Pb não forneceram informação quanto a essa questão. O que é sabido a partir dos resultados é a idade da última rehomogeneização isotópica acorrida no Neoproterozoico, indicando a idade de metamorfismo. Nesse período ocorreu o retrabalhamento crustal dessa rocha indicados pelos altos valores de ɛHf negativos e sua extração mantélica se dá no Arqueano.

Nas figuras 4.3.9-3 e 4.3.8-4 são ilustrados os diagramas dos valores de ϵ Hf (t) e da razão ¹⁷⁶ Hf/¹⁷⁷ Hf para a idade de cristalização dessa amostra respectivamente

Amostra	Idade U- Pb Ma	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	EHf (t)	±2SE	Idade TDM
CPR 02-A- 04	629±9	0,281584	0,000051	0,000722	0,000037	0,281576	-28,8	1,5	2,84
CPR 02-B- 04	629± 9	0,281600	0,000039	0,000412	0,000017	0,281595	-28,1	1,2	2,81
CPR 02-D- 01	629± 9	0,281669	0,000035	0,000562	0,000022	0,281663	-25,7	1,1	2,69
CPR 02-D- 04	629± 9	0,281612	0,000034	0,000549	0,000018	0,281605	-27,7	1,0	2,79
CPR 02-D- 06	629± 9	0,281514	0,000034	0,000886	0,000010	0,281504	-31,3	0,4	2,97
CPR 02-D- 09	629± 9	0,281616	0,000040	0,000715	0,000030	0,281607	-27,6	1,2	2,79
CPR 02-E- 06	629± 9	0,281684	0,000045	0,001352	0,000127	0,281668	-25,5	2,4	2,68
CPR 02-F- 05	629± 9	0,281608	0,000039	0,000018	0,000002	0,281608	-27,6	3,2	2,79
CPR 02-F- 09	629± 9	0,281619	0,000048	0,000994	0,000055	0,281608	-27,6	1,6	2,79
CPR 09 B 07	629± 9	0,281597	0,000039	0,000638	0,000041	0,281590	-28,3	1,9	2,82

Tabela 4.3.9-2: Resultados das análises Hf nos grãos de zircão da CPR 02.

Figura 4.3.9-3: Diagrama com valores de épsilon Hf vs. Tempo da amostra CPR 02.

Fonte: A autora, 2016.

Figura 4.3.9-4: Diagrama com valores de ¹⁷⁶Hf/¹⁷⁷Hf inicial vs. Tempo da amostra CPR 02.

Fonte: A autora, 2016.