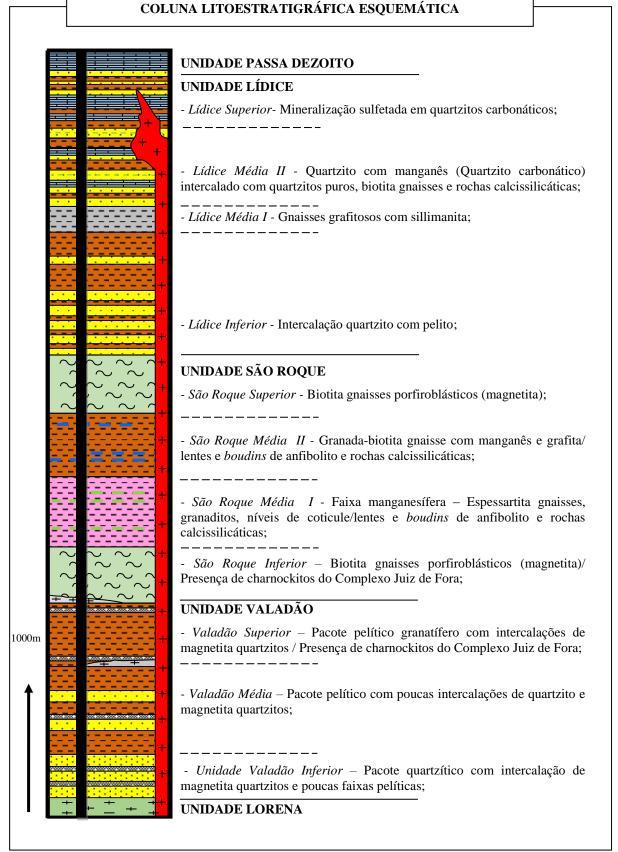
7. DISCUSSÕES

As unidades estudadas, unidades Valadão, São Roque e Lídice, foram escolhidas devido a relevância essencial para a caracterização dos paleoambientes formadores dos diversos litotipos que compõem a sequência de rochas, particularmente, os relacionados as mineralizações sulfetadas presentes na Unidade Lídice, trazendo à luz interpretações capazes de refletir o melhor enquadramento tipológico deste depósito.


A partir dos estudos desenvolvidos, foi elaborado um esquema litoestratigráfico mostrando as distintas unidades litológicas relatadas no capítulo anterior (Figura 36).

7.1. Considerações sobre análise paleoambiental das unidades litológicas

O conjunto litológico presente na área estudada compreende uma série de litofácies bastante diversificadas, que representam diferentes ambientes de sedimentação, definidos de acordo com as características presentes em cada terreno. O enquadramento geológico das unidades conduz a pontos importantes, no que diz respeito à exploração geológica, que podem implicar em informações acerca de áreas propícias à ocorrência de mineralizações.

A rocha de natureza incomum, presente na Unidade Valadão, é representada pelo litotipo magnetita quartzito, de mineralogia essencial composta por quartzo e magnetita, que ocorre intercalado em meio à sucessão de quartzitos e gnaisses dessa sequência, interpretados como arcósios e grauvacas. A priori, esta rocha caracteriza um ambiente com contribuições exalativas, que em concordância à hipótese lançada pela Riofinex (1977), admite que os quartzitos com magnetita tenham sua origem associada a concreções ferruginosas do tipo "Ironstone", uma vez que, apresentam pacotes de pequena espessura, e também associações com quartzitos puros e biotita gnaisses, com e sem a presença de granada, interpretados como arcósios e grauvacas, determinando assim, condições, predominantemente, calmas para deposição dos litotipos. Análises petrográficas realizadas por Klein & Fink (1976) mostram que muitos depósitos de hematita/ magnetita quartzito apresentam assembleias resistentes ao alto grau metamórfico, não gerando reações metamórficas, embora as assembleias mostrem substituições entre a magnetita e hematita.

Figura 36 - Esquema litoestratigráfico da Unidades presente na área.

Nota: Diques de diabásio e granitos (representados em preto e vermelho, respectivamente) são rochas que cortam toda a área.

Fonte: A autora, 2013.

O espesso pacote quartzítico da Unidade Valadão Inferior, apresenta baixo teor de impurezas em sua composição, sendo constituído por mais de 85% de quartzo. Apesar da falta de estruturas primárias nesta rocha, obliteradas possivelmente pelo metamorfismo, o ambiente de sedimentação pode ser caracterizado como de plataforma rasa, com alto grau de seleção e alta energia, associado a ambientes costeiros ou litorâneos.

Por outro lado, os litotipos gnáissicos das unidades superiores (Valadão Média e superior) marcam um primeiro ciclo de afundamento da plataforma, culminando na deposição de sedimentos aluminosos argiláceos numa porção mais profunda da bacia, talvez relacionado a plataforma transicional. Os quartzitos desta unidade podem apresentar derivação relacionada a fluxos turbidíticos, sendo então, explicada a sua escassez nestas unidades, visto que, esta rocha ocorre desenvolvendo faixas de pequena espessura, característicamente descontínuas, devido, possivelmente, à dificuldade de preservação no registro sedimentar.

As rochas presentes na unidade Valadão, representam uma associação de rochas de origem sedimentar, onde se observa sequências de quartzitos intercalados a metapelitos com biotita, e, no topo da unidade, gnaisses mais aluminosos, com maior quantidade de granadas, que refletem deposição de rochas em ambiente de plataforma rasa a transicional, no contexto de bacias epicratônicas (SANGSTER, 1990).

Os gnaisses das unidades São Roque Inferior e Superior, representantes de base e topo da unidade, respectivamente, são constituídas predominantemente por (Hornblenda) biotita gnaisses, que devido às suas relações de contato brusco com as unidades adjacentes, e também, pelas feições texturais encontradas, inúmeras vezes do tipo *augen*, sugerem como possível protólito, uma rocha ígnea de composição mineralógica granítica.

Em contrapartida, as rochas presentes nas unidades São Roque Média I e II, posicionadas no interior da unidade, compostas por paragnaisses granatíferos com intercalações de rochas calcissilicáticas, *boudins* de anfibolito e porções manganesíferas, representam uma associação de litotipos característicos de ambiente marinho profundo, relacionado à bacia oceânica num processo relacionado a transgressões marinhas (LYDON, 1995; YANG *et al*, 2004).

Os paragnaisses granatíferos, com ou sem sillimanita, são derivados de sedimentos argilosos, em ambiente regidos basicamente por fluxos calmos de caráter monótono, alternado apenas por pulsos de sedimentação turbulenta, tipicamente turbidítico, expresso

por pacotes de magnetita quartzitos, que se encontram dispostos esporadicamente na unidade (SANGSTER, 1990).

Em acréscimo aos apontamentos propostos, vale a pena ressaltar o destaque dado pela Riofinex (1977) a correlação genética dos magnetita quartzitos, da Unidade Valadão, com as rochas calcissilicáticas, da Unidade São Roque. Porém, embora tenha excluído a hipótese de derivação por exalações submarinas às rochas calcissilicáticas, devido à suposta ausência de metabasitos na unidade, os trabalhos de campo efetuados, possibilitaram a identificação de inúmeras lentes e *boudins* de anfibolito, confirmando assim, a hipótese de influência exalativa às unidades São Roque Média I e Média II, uma vez que, em conformidade, apresentam também grande quantidade de manganês e ferro.

A Unidade São Roque Média I marca a ocorrência da faixa manganesífera na sequência metassedimentar, onde o manganês é encontrado como espessartita em paragnaisses com ou sem sillimanita, e também em níveis delgados de coticule. Esta associação coloca em destaque a contribuição de fontes hidrotermais submarinas na unidade. A ocorrência de anfibolitos intercalados na sucessão, presentes na Unidade São Roque Média II, também contribui para a interpretação do paleoambiente, deixando clara a relação das rochas metassedimentares com substrato marinho (LARGE *et al.*, 2005).

Os gnaisses charnockíticos que afloram nas unidades Valadão e São Roque, apresentam altos teores de magnetita, chegando a alcançar valores aproximados de 29% da rocha. Ocorrem como faixas isoladas, e a posição em que se encontram, sugere uma íntima relação com o embasamento granulítico, encontrando-se, neste no caso, exumado (DUARTE, 1997). Entretanto, Subba Reddy e Sashidhar (1989) mencionam a ocorrência de magnetita quartzitos no distrito Arcot (Tamil Nadu, Índia), em condições de alto grau metamórfico, apresentando mineralogia composta por quartzo, magnetita, ortopiroxênio (hiperstênio), clinopiroxênio (hedembergita e grunerita), apatita, clorita, martita, e em menores quantidades carbonatos, granada e actinolita. Esta paragênese, sugere uma origem associada ao processo sedimentar para a proveniência dessas rochas.

7.2. Considerações sobre a mineralogia encontrada nos concentrados de bateia

Os pontos amostrados na área 1, foram realizados a fim de identicar minerais que pudessem orientar as interpretações referentes ao enquadramento tipológico da mineralização.

O mineral secundário representado pela limonita foi encontrada nos concentrados CB-02 e CB-03, embora em pequena quantidade, esta ocorrência sugere proveniência dos Charnockitos do Complexo Juiz de Fora, já que foram encontrados pontos desta rocha com presença de sulfetos disseminados (AC-111). A pirita, no entanto, não foi constatada nas amostragens, em razão, possivelmente, do pouca estabilidade do mesmo em superfície.

A presença de cianita foi contatada no concentrado CB-03, fato que decorre em conformidade à ocorrência deste mineral na Unidade Lídice Inferior (AC-073).

A turmalina não foi observada nos concentrados analisados, devido, possivelmente, à ausência de corpos pegmatíticos cortando a região, mais próxima às Unidades São Roque e Valadão.

O diopsídio foi observado apenas no concentrado CB-01, o que pode sugerir uma proveniência relacionada às rochas calcissilicáticas, das Unidades São Roque Média I e II, assim como, aos ortogranulitos do Complexo Juiz de Fora.

A almandina aparece em crescente abundância nos concentrados, conforme a proximidade com os paragnaisses da Unidade São Roque Média I e II. O decréscimo no conteúdo de magnetita nas amostragens, CB-01, CB-02, CB-03, respectivamente, reflete o progressivo distanciamento da área fonte, que no caso, seriam os magnetita quartzitos, da Unidade Valadão, e ortognaisses com magnetita, presentes na Unidade São Roque Inferior.

Os concentrados coletados na área 2, referente aos pontos CB-04, CB-05, CB-06, ocorrem com mineralogia semelhante, porém com valores de concentração distintas, apresentam os seguintes constituintes: turmalina, pirita, limonita, anfibólio, granada, diopsídio, magnetita, zircão, monazita, rutilo, vermiculita, espinélio, cianita e quartzo.

Por se tratarem de fases pouco estáveis no ambiente exógeno (PEREIRA, 2012), os minerais que apresentam uma relação direta com a mineralização sulfetada, pirita, piroxênio (diopsídio) e anfibólio são encontrados em pouca quantidade nas amostragens. Em concordância, biotita como um mineral pouco estável, não foi observado nos concentrados. Ao contrário da almandina e magnetita, sillimanita, espinélio, cianita, que se caracterizam como minerais com maior grau de estabilidade mediante aos processos de alteração superficial.

No que se refere às relações de proveniência, os minerais encontrados em pouca quantidade, nos três concentrados, foram pirita, zircão, monazita, vermiculita e espinélio. Por outro lado, enquanto a pirita praticamente desaparece dos concentrados CB-04 e CB-06, torna-se evidente um aumento progressivo no conteúdo de limonita nestes

concentrados, sendo encontrado, inversamente como mineral traço no concentrado CB-05. A turmalina reflete uma fase pertencente aos pegmatitos existentes na área.

Resquícios de granada são encontrados no concentrado CB-04 e CB-06, enquanto que é observado em abundância no concentrado CB-05, o que sugere um aumento progressivo, ao passo que, se aproximidade da unidade Lídice inferior, onde são encontrados litotipos gnáissicos granatíferos.

O baixo conteúdo de cianita nos concentrados CB-05 e CB-06, e sua ausência completa no concentrado CB-04, consistindo num gradual desaparecimento deste mineral a medida que se distância da área fonte, provavelmente, relacionada a ocorrência de cianita próximo ao limite da unidade, dentro dos paragnaisses da Unidade Lídice Inferior (AC-073).

7.3. Considerações sobre o paleoambiente deposicional da Unidade Lídice

A Unidade Lídice, compõe-se de quartzitos, quartzitos carbonáticos, quartzitos com manganês, rochas calcissilicáticas e paragnaisses. Segundo a Riofinex (1977), os litotipos quartzíticos estariam associados a um ambiente raso, enquanto os litotipos gnáissicos, seriam originados de arcósios, com proveniência ligada a detritos vulcânicos. Essa associação foi interpretada como proveniente de um ambiente plataformal, onde a variação litológica é atribuída às mudanças no paleoambiente de deposição, que em condições rasas são influenciadas pela ação das marés, enquanto que, em condições mais profundas, podem estar relacionadas à correntes de turbidez.

Num contexto estratigráfico, a Unidade Lídice mostra uma sequência metassedimentar com fortes características associadas a um ciclo de raseamento, que se inicia com uma sucessão de rochas metapelíticas na base, indicando ambiente profundo, que fica gradualmente mais raso a medida que se chega ao topo da unidade, marcando fácies metapsamíticas, possivelmente, relativas a um ambiente plataformal raso, em correspondência com a visão paleossedimentar da Riofinex (1977).

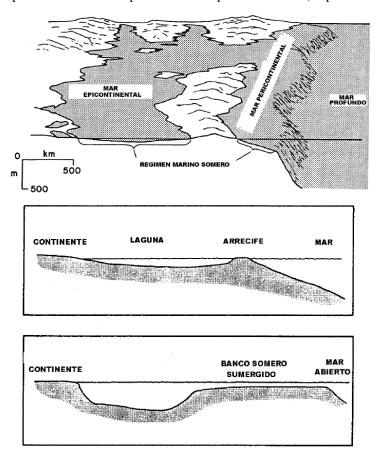
A proporção de rochas metapelíticas é muito superior a ocorrência de quartzitos na Unidade Lídice inferior, entretando, na base da sequência, a Unidade Lídice Inferior em contato com a Unidade São Roque Inferior, apresenta um pacote de quartzito finamente intercalado com o metapelito, sugerindo uma origem associada a sedimentação rítmica, que pode ser atribuída a fluxos turbidíticos densos, de caráter episódico, no fundo de bacia

(SANGSTER, 1990). A porção derivada de metapelito é altamente aluminosa, fato corroborado pela concentração de cianita no pacote.

Os gnaisses da Unidade Lídice Média I compreendem camadas enriquecidas em sillimanita associadas a níveis grafíticos, sendo interpretados como produto de sedimentos argilosos com alto teor de alumínio e matéria orgânica, refletindo assim, uma deposição associada a um ambiente de sedimentação calmo, típico de fundo bacinal (BIONDI, 2003).

O grande diferencial encontrado nas Unidades Lídice Média II e Lídice Superior, se refere à ocorrência de rochas de composição carbonática, neste caso, quartzitos carbonáticos. Este litotipo se caracteriza como uma ocorrência bastante incomum, que representa a rocha hospedeira da mineralização sulfetada na área. São observados também, associações, desta rocha, com quartzitos, rochas calcissilicáticas, e ainda, biotita gnaisses. As relações de contato gradual observadas nestas rochas, sugerem variações laterais que podem ser interpretadas como mudanças faciológicas dentro da sucessão sedimentar.

Os quartzitos carbonáticos apresentam mineralogia rica em quartzo, calcita e menores quantidades de clinopiroxênio, sugerindo derivação provável de calcarenitos. Porém, quando alterados, correspondem ao litotipo quartzito com manganês, ao qual a proveniência do manganês, pode estar ligada a alteração do clinopiroxênio, denominado johannsenita (CaMnSi₂O₆), pertencente ao grupo piroxênios. Desta forma, após a alteração do carbonato e do piroxênio, resta apenas o quartzo e, nos poros, o manganês.


Os biotita gnaisses, por outro lado, apresentam grande quantidade de feldspato e mica em sua composição, passando gradualmente a pacotes quartzíticos com grau de pureza mais elevado. As rochas calcissilicáticas, são originadas, possivelmente, de uma mistura pelito-carbonática relacionada a calcilutitos, visto a ausência de corpos anfibolíticos que possibilitem uma correlação com exalações hidrotermais na unidade (LYDON, 1995; LYDON, 2004).

Depósitos de natureza evaporítica são difícilmente encontrados em terrenos afetados por metamorfismo de alto grau, devido a facilidade de dissolução dos sais e sulfatos típicos deste ambiente (gipsita, barita, anidrita e halita). Da mesma forma que, outras evidências como esteiras algálicas, formadas na região intermaré, e estruturas heterolíticas de sulfato de cálcio, características da porção supramaré, também são obliteradas pelo processo metamórfico. Apesar disto, a ocorrência de camadas de quartzitos carbonáticos com espessuras de ordem métrica, assemelham-se às acumulações sedimentares características de sabkhas, que geram, comumente, sequências pouco

espessas, variando de 30 cm até 1 ou 2 m (SCHREIBER & TABAKH, 2000), no contexto de plataformas epicontinentais (Figura 37).

A composição mineralógica das rochas desta sequência, também apresenta pontos importantes, no que tange a correlação paleoambiental. Nesta situação, a forte influência do clima árido na deposição sedimentar, tende a inibir a deposição de sedimentos argilosos, caracterizando assim, a ausência ou pouca quantidade de litotipos ricos em granada na Unidade Lídice Média I e II. A ocorrência de barita em meio às rochas desta sequência gnaisse-quartzítica (GOODFELLOW *et al.*, 1993; GOODFELLOW & LYDON, 2007), constatada em sondagens realizadas pela Riofinex (1977), aponta também para a proposta de formação, dos depósitos sulfetados de Rio Claro, e rochas afins, relacionada ao ambiente evaporítico do tipo sabkha (LARGE *et al.*, 2005).

Figura 37 – Vista esquemática dos mares epicontinentais e pericontinentais (de plataforma).

Legenda - (a) Características gerais; (b) Laguna entre a margem de um bloco continental e um recife. (c)
Banco puro profundo submerso rodeado por águas profundas.
Fonte: Simplificado de Friedman (1978).

7.4. Considerações sobre a tipologia dos depósitos sulfetados de Rio Claro e sua correlação com os modelos metalogenéticos mencionados

Como já foi mencionado anteriormente, os depósitos sulfetados de Rio Claro são conhecidos desde a década de 30, quando foi aberta uma mina para exploração do sulfeto pirita. Desde então, diversas hipóteses foram sugeridas para explicar a origem dessa mineralização, dentre as quais se destacam, a derivação por processos hidrotermais (ABREU & OLIVEIRA, 1934), metamorfismo de contato (SOUSA, 1939; LEONARDOS, 1942), origem epigenética (RIOFINEX, 1977), e origem singenética (SUSZCZYNSKY,1975; FONSECA *et al.*, 1979; CHAVES, 1987).

O contexto da Megassequência Andrelândia abrange diferentes ambientes deposicionais em terreno de alto grau metamórfico, representando associações litológicas geralmente encontradas em ambiente marinho. No que se refere à tipologia dos depósitos, tendo como base o enquadramento geológico das ocorrências de Rio Claro, foram correlacionados três modelos metalogenéticos mundialmente conhecidos, Mississippi Valley (MVT), Sedimentar Exalativo (SEDEX) e Broken Hill (BHT). Dentre estes, a RIOFINEX (1977) destacou o MVT, como modelo de formação para os depósitos de pirita de Rio Claro, enquanto Chaves (1987), relatou similaridades com os depósitos sulfetados do tipo Broken Hill.

Com base nos diferentes ambientes de deposição, relacionados aos modelos apontados neste trabalho, correlações entre os depósitos sulfetados de Rio Claro e os três modelos metalogenéticos foram realizados, ressaltando as principais similaridades e diferenças entre esses depósitos.

Os litotipos que compõem a Unidade Lídice Média II e Superior, compreende rochas carbonáticas e rochas siliciclásticas, representadas por quartzitos carbonáticos, calcissilicáticas, biotita gnaisses e quartzitos. Esta relação de rochas, diretamente associada ao minério, apresenta similaridades com os modelos MVT (ALLDRICK & SANGSTER, 2005; LEACH *et al.*, 2005), SEDEX (SANGSTER, 1990; LARGE *et al.*, 2005) e BHT (PARR & PLIMER, 1993; PAGE *et al.* 2005). No entanto, embora rochas carbonáticas ocorram na sucessão, uma correlação com o modelo MVT não seria conclusiva, em razão da ausência de litotipos dolomíticos francos, e ainda pelo caráter epigenético, que seria responsável por produzir alterações hidrotermais, tais como dolomitização e brechação, nestes depósitos (ALLDRICK & SANGSTER, 2005).

Os depósitos do tipo SEDEX, em contrapartida, se desenvolvem no contexto de bacias marinhas, num ambiente associado ao fundo oceânico, indo gradualmente ao transicional. As rochas associadas a zona mineralizada, podem ser correlacionadas às rochas da Unidade Lídice, sendo assim, os folhelhos carbonosos, dolomíticos e calcários micríticos encontrados nestes depósitos (SANGSTER, 1990), poderiam ser interpretados, respectivamente, como gnaisses com sillimanita e grafita da Unidade Lídice Média I, e rochas calcissilicáticas e quartzitos carbonáticos da Unidade Lídice Média II e Lídice Superior.

Em conformidade ao modelo SEDEX, os depósitos do tipo BHT são, também, associados a bacias oceânicas, sendo caracterizado basicamente como um depósito sedimentar exalativo metamorfisado em alto grau, podendo ser correlacionado com os depósitos sulfetados da região, onde são encontradas rochas com paragêneses típicas de eventos metamórficos em fácies anfibolito superior a granulito, como é o caso de litotipos contendo cianita e sillimanita em gnaisses das unidades Lídice e São Roque, inclusive, a ocorrência de piroxênio em ortogranulitos do Complexo Juíz de Fora. Contudo, a sedimentação presente neste modelo, é caracterizada como derivada de turbiditos plataformais distais (PARR & PLIMER, 1993; PAGE *et al.* 2005), diferenciando-se, desta forma, do contexto paleoambiental proposto para a mineralização de Rio Claro.

Ainda em relação ao modelo BHT, estruturas geradas por eventos deformacionais, responsáveis pela reconcentração do minério, semelhantes às encontradas no Grupo Broken Hill (Austrália), podem ser correlacionadas, também, à zona onde se encontra a mineralização de Rio Claro (PLIMER, 1979). Veios preenchidos com sulfetos são constatados na mina Córrego Paraguay e Colengo (RIOFINEX, 1977), provavelmente ligados a eventos de remobilização tardia e a zonas de cisalhamento, ou outras estruturas rúpteis, a exemplo do Lineamento de Rio Claro.

No que se refere a associação de litotipos regionais, a sequência litoestratigráfica estabelecida pelas Unidades Lídice, São Roque e Valadão, compõem-se de litologias semelhantes com as encontradas nos modelos metalogenéticos BHT e SEDEX. Litotipos de protólitos francamente sedimentares são observados na Unidade Lídice, sendo representados por biotita gnaisses, rochas carbonatadas com manganês, rochas com bário, rochas calcissilicáticas, granada-biotita gnaisses e sillimantita gnaisses, bem como, rochas metassedimentares químicas exalativas, características das Unidades Valadão e São

Roque, que representam, respectivamente, rochas de assinatura exalativa como espessartita gnaisses, coticules e magnetita quartzitos.

A Unidade Lídice compreende os litotipos relacionados a mineralização sulfetada, sendo caracterizada pela ocorrência de quartzitos carbonáticos, quartzitos com manganês, biotita gnaisses, granada-biotita gnaisses, sillimantita gnaisses com grafita, rochas calcissilicáticas, e ainda, a presença de bário e rochas ultramáficas, em furos de sondagem (RIOFINEX, 1977). Quanto às rochas paragnáissicas, a associação litológica mencionada apresenta similaridades com o modelo Broken Hill, entretanto, outras rochas exalativas como gonditos, quartzitos com gahnita e turmalinitos, típicas do modelo BHT, não são encontradas na sequência da Unidade Lídice. Em adição, após a análise dos concentrados de bateia realizados na área 2, região do Rio das Canoas e Passa Dezoito, não foi constatada a presença de gahnita nem fibrolita, nas amostragens geoquímicas realizadas, minerais guias que refletiriam um importante parâmetro na correlação com os depósitos do tipo BHT (WILLIS et al, 1983). Outro ponto divergente, estaria associado à rocha portadora do minério, que em Rio Claro encontra-se encerrado em quartzitos carbonáticos, enquanto que, nos depósitos BHT os sulfetos estão hospedados em gnaisses quartzo-feldspáticos.

Em contrapartida, nos depósitos do tipo SEDEX, o minério está presente em folhelhos carbonosos, folhelhos dolomíticos e calcários micríticos, mantendo relação com a sedimentação em ambiente profundo a transicional, caracterizando semelhanças no que se refere às rochas hospedeiras da mineralização sulfetada em zinco e chumbo. Embora, nos trabalhos de mapeamento geológico, não tenham sido encontrados litotipos francamente carbonáticos, as sondagens realizadas pela RIOFINEX (1977), permitiram identificar mármores calcíticos, também mineralizados, na Unidade Lídice. Sendo assim, este conjunto de rochas pode ser interpretado como rochas pelíticas e psamíticas metamorfisadas, associadas principalmente às unidades Lídice Média I, II e Superior. Porém, nos depósitos de Rio Claro apenas o litotipo com filiação carbonática encontra-se mineralizado.

Divergências quanto ao paleoambiente original de deposição também podem ser apontados, no que se refere ao modelo BHT. Enquanto que, no contexto regional, este modelo encontra-se associado à bacias marinhas, representando rochas tipicamente depositadas num ambiente mais profundo com influências turbidíticas, enquanto as mineralizações de Rio Claro estão enquadradas num ambiente de que engloba associações

litológicas de ambiente profundo, típico de bacias oceânicas, bem como, litotipos relacionados a sedimentação transicional, em porções mais rasas da bacia, onde ocorrem os litotipos metapsamíticos nas Unidades Lídice Média II e Lídice Superior.

Ao contrário dos depósitos estratiformes *stratabounds* do tipo Broken Hill, encontrados geralmente como pacotes de grandes dimensões, tanto em espessura quanto em extensão lateral, a mineralização de Rio Claro encontra-se disposta como depósitos estratiformes de pequena espessura, exibindo pacotes de até 3m (RIOFINEX, 1977), assim como nos depósitos do tipo MVT, que tendem a ocorrer como pacotes pequenos, que em conjunto formam um distrito (ALLDRICK & SANGSTER, 2005).

Os quartzitos carbonáticos encontram-se em associação com biotita gnaisses, camadas calcissilicáticas e quartzitos com manganês, este último definido como guia estratigráfico para as ocorrências sulfetadas. Esta associação sugere derivação de ambiente evaporítico formado em sabkhas costeiras, regidas pela ação de marés, no contexto de mares epicontinentais. Embora, esteja inserido num contexto paleoambiental parecido com o modelo MVT, estes depósitos são caracterizados como epigenéticos, diferentemente dos depósitos de Rio Claro, que se caracterizam como singenéticos, estando, os sulfetos de zinco e chumbo, disseminados na rocha (RIOFINEX, 1977).

A proporção dos sulfetos nos diferentes tipos de depósitos e modelos metalogenéticos são variáveis, e algumas vezes, são influenciadas por algum zoneamento local ou regional. Entretando, comum a todos os depósitos citados, os metais base mais importantes são esfalerita e galena, representados pelos sulfetos de zinco e chumbo, respectivamente.

No contexto da mineralização de Rio Claro, a esfalerita, constitui o principal sulfeto de importância economica presente na área, apresentando reservas com tonelagem, provável e inferida, de cerca de 1600 t (com 950 t Zn) a 9200 t (5500 t de Zn), embora seja caracterizada como subeconomica. A mineralização ocorre disseminada nos quartzitos carbonáticos, incluindo os seguintes sulfetos, em ordem de importância, esfalerita, galena, pirrotita, pirita, calcopirita e prata. Aparentemente, a mineralização não apresentam um padrão de zoneamento definido, sendo possível apenas o levantamento de relações entre o aumento e diminuição dos sulfetos. Neste âmbito, vale ressaltar que, de forma progressiva, a esfalerita e a pirrotita parecem estar associadas ao decréscimo de pirita, em direção a leste. Desta forma, a pirita passa a ser encontrada apenas em veios, junto com a galena, ao

contrário das ocorrências de Colengo e Passa Dezoito, onde os metais base encontram-se dispersos no pacote.

À exceção do modelo MVT, o modelo SEDEX apresenta um padrão de zoneamento lateral definido por Cu-Fe > Pb > Zn, apresentando como principais minerais de minério a esfalerita e a galena (BIONDI, 2003). A falta de zoneamento plausível, bem como, a grande quantidade de pirrotita dos depósitos de Rio Claro, divergem das caracterísiticas do modelo SEDEX. De outro modo, o modelo BHT, compreende como principais minerais de minério a galena argentífera, esfalerita e, subordinadamente, pirrotita, calcopirita e arsenopirita. Inclusive, não é informado um zoneamento padrão definido, visto a influência do metamorfismo na estrutura do depósito.

7.5. Relação entre o ambiente evaporítico e as mineralizações sulfetadas

O elemento bário, encontrado nas associações químicas dos três modelos estudados, MVT, SEDEX e BHT, tende a ser um parâmetro de grande relevância, em interpretações sobre a origem da mineralização, principalemente, na correlação com as rochas pertencentes a Unidade Lídice, onde foi constatada, por meio de sondagens, a presença de barita na sequência amostrada (RIOFINEX, 1977). Esta ocorrência constituiu um elemento essencial na interpretação do ambiente percussor das mineralizações sulfetadas em zinco e chumbo, trazendo a luz, aspectos correlacionáveis com o ambiente evaporítico, tanto em contextos marinhos, tipo SEDEX e BHT, como em porções marginais da bacia, como é o caso do modelo MVT.

Nos depósitos do tipo MVT, o ambiente evaporítico corresponde ao modelo de formação mais aceito para explicar a origem do minério (Alldrick & Sangster, 2005), relacionando-se diretamente a rochas carbonáticas e outras rochas porosas existentes, cuja a movimentação dos fluidos se processa após a diagênese das rochas portadoras do minério, por compactação dos aquíferos subterrâneos ou ainda, por gravidade através de zonas de falhas.

Diferentemente dos depósitos do MVT, os depósitos sulfetados em zinco e chumbo do tipo SEDEX são formados, simultaneamente, ao processo de deposição sedimentar. São propostas duas hipóteses para explicar a mineralização de metais base, do tipo sedimentar exalativo, a partir de soluções evaporíticas. De acordo com Goodfellow *et al* (1993), o fluido mineralizado seria originado da dissolução direta de evaporitos, por águas

meteóricas e/ou marinhas concomitante a deposição, entretando, Lydon (1995), Garven *et al.* (2001), Yang *et al.* (2004) e Yang *et al.* (2006) sugerem uma derivação relacionada a fluidos conatos de natureza evaporítica, transportados por gravidade, singeneticamente.

O modelo tipo BHT admite duas possíveis fontes para a mineralização de zinco e chumbo, sugerida por Parr & Plimer (1993). Neste caso, foi proposto que a mineralização sulfetada seria resultado de uma mistura de fluidos de proveniência exalativa, de origem magmática, e fluidos evaporíticos enriquecidos em metais base, sendo então, responsáveis pela concentração do minério nos gnaisses. Similarmente, aos depósitos do tipo SEDEX.

Nos depósitos sulfetados de Rio Claro, o ambiente evaporítico representa um importante aspecto no enquadramento geológico da mineralização. Ao contrário das propostas anteriores, as unidades Lídice Média II e Superior, relacionadas ao minério, representariam fácies típicas de ambientes de sabkha costeira, onde os fluidos mineralizados teriam se depositado nos poros dos quartzitos carbonáticos, ao passo que, se processava o empilhamento da sucessão sedimentar.

CONSIDERAÇÕES FINAIS

Tomando como base o conjunto de informações disponíveis sobre a região de Rio Claro, principalmente nas proximidades de Lídice, os trabalhos de mapeamento geológico e cartografação desenvolvidos, bem como os estudos petrográficos realizados em litotipos da área, foram definidas um total de onze subunidades, a partir das unidades pré-definidas pela RIOFINEX, Valadão, São Roque e Lídice, a fim de caracterizar geologicamente as mineralização sulfetadas presentes na região de Rio Claro. As unidades foram subdivididas, segundo a caracterização dos espécimes rochosos, na etapa de exploração da área, assim como, em descrições macroscópicas e petrográficas de lâminas delgadas.

Na área, que compõe a Megassequência Andrelândia, foi encontrada uma gama de litotipos bastante incomuns que incluem faixas métricas de magnetita quartzitos, interpretados como formações ferríferas fácies óxido, gnaisses enriquecidos em magnetita (Tabela 6), quartzitos carbonáticos, além da presença de espessartita gnaisses, rochas calcissilicáticas, anfibolitos e gnaisses grafitosos, refletindo uma associação típica de bacias marinhas com influência de exalações submarinas.

A Unidade Valadão foi caracterizada consoante à presença de quartzitos com magnetita, na forma de corpos estratiformes dispostos em meio à sequência de quartzitos intercalados a pacotes metapelíticos, que sugere um ciclo de afundamento da plataforma, para o topo da unidade, com forte influência de exalações hidrotermais.

Tabela 6 – Proporção de magnetita nos litotipos das unidades Valadão e São Roque.

Ponto	Unidade	Rocha	Proporção de magnetita
AC-199 ^a	Valadão Inferior	Quartzito com magnetita	36,4%
AC-199	Valadão Inferior	Quartzito com magnetita	21,2%
AC-200	Valadão Média	Granulito com ita	1,9%
AC-202	Valadão Média	Quartzito com magnetita	29,5%
AC-108	São Roque Inferior	Biotita gnaisse milonítico com magnetita	7,2%
AC-105/044	São Roque Inferior	Ortogranulito com magnetita	28,3%
AC-053	São Roque Superior	Biotita gnaisse com magnetita	6,6%

Fonte: A autora, 2013.

Na Unidade São Roque são encontrados litotipos francamente metapelíticos, granada-biotita gnaisses com e sem a presença de sillimanita e grafita, que refletem um

padrão de deposição típico de ambientes de baixa energia, no fundo de bacias marinhas, associados, possivelmente, a transgressões marinhas. A associação de rochas desta unidade, reflete ainda, contribuições exalativas, relacionadas a presença de manganês sob a forma de espessartita, em gnaisses, e como níveis de coticule, e calcissilicáticas, interpretadas como metacherts, em meio à sequência. Os gnaisses das unidades São Roque Inferior e Superior, seriam correspondentes metamórficos de rochas ígneas de composição ácida, possivelmente de comporsição granítica a granodiorítica.

Na Unidade Lídice, representante mais importante no contexto da mineralização sulfetada de Rio Claro, são encontrados litotipos interpretados como proveniente de dois paleoambientes de sedimentação distintos, que sugerem, no sentido estratigráfico, um ciclo de raseamento do ambiente profundo para o plataformal, associados a porções proximais da bacia. Na unidade basal, encontram-se intercalações de quartzito e metapelitos, que sugerem deposição em contextos mais profundos da bacia, associados a ciclos de deposição rítmica, derivadas de correntes de turbidez. Na unidade intermediária, são observados gnaisses aluminosos apresentando grafita, sugerindo um padrão de sedimentação calmo, ainda, relacionado ao fundo marinho. Nos entanto, nas porções superiores da unidade, são encontradas rochas quartzíticas e carbonáticas intercaladas a biotita gnaisses e calcissicilicáticas, refletindo um ambiente de deposição em um contexto mais raso, associado a ambientes evaporíticos do tipo sabkha, no contexto de uma plataforma epicontinental dominadas por ação de marés (planície de supra a infra-maré).

Diferentes propostas foram abordadas na tentativa de explicar a mineralização sulfetada de Rio Claro, destacando a derivação por processos hidrotermais (ABREU & OLIVEIRA, 1934), metamorfismo de contato (SOUSA, 1939; LEONARDOS, 1942) e ainda, origem epigenética (RIOFINEX, 1977). Todavia, este modelos não conseguem caracterizar o depósito como um todo, pois são levadas apenas em consideração as ocorrências de Paraguay e Colengo, onde são encontrados veios e pegmatitos com pritita (CHAVES, 1987), possivelmente, remobilizados por processos associados ao metamorfismo. Numa análise regional da mineralização, os sulfetos ocorrem de forma disseminada ao longo dos pacotes quartzíticos carbonáticos, sendo mais plausível, desta forma, a origem da mineralização relacionada ao processo singenético.

O enquadramento tipológico dos depósitos de Lídice, ainda é considerado controverso, no entanto, a partir da correlação dos modelos metalogenéticos estudados

com os principais características dos depósitos de Rio Claro tornou-se possível sugerir o melhor enquadramento tipológico para a mineralização.

Os diferentes modelos apontados neste trabalho, apresentam características peculiares capazes de orientar correlações que auxiliam no conhecimento da área de pesquisa. A interpretação do ambiente de deposição das rochas, constitui um importante ponto de partida, que possibilitou a identificação de guias estratigráficos e minerais guias em campo. Neste âmbito, similaridade e discrepâncias em diversos aspectos foram correlacionados com os depósitos de sulfetos de Rio Claro, entretanto, o melhor enquadramento desta mineralização ainda é bastante complexo, sendo de grande importância ressaltar que, o modelo sugerido poderá não ser conclusivo, em virtude de algumas diferenças quanto às características do modelo, e também pela falta de dados.

O modelo proposto que apresenta melhor enquadramento, para os depósitos mineralizados em zinco e chumbo no distrito de Rio Claro, compreende o modelo do tipo Sedimentar Exalativo. Apesar das mineralizações de Rio Claro estarem submetidas ao metamorfismo de alto grau, este modelo compreende pontos fortes, no que se refere ao principal mineral de minério, representado pela esfalerita, grande quantidade de pirrotita associada ao minério, caráter singenético da mineralização, e sobretudo, correlação dos litotipos e ambiência tectônica, que permite associações com sabkhas em ambiente evaporítico marginal, bem como foi sugerido para as unidades Lídice Média II e Lídice Superior, portadoras do minério de zinco e chumbo.

RECOMENDAÇÕES

Diversas lacunas em relação ao paleoambiente original de sedimentação, podem ser esclarecidas mediante a realização de análises químicas em alguns litotipos associados à mineralização sulfetada, com a finalidade de corroborar o enquadramento tipológico proposto. Sendo assim, recomenda-se a análise da granada espessartita, presente nos paragnaisses e coticules da Unidade São Roque Média I e São Roque Média II; e da magnetita, presente nos quartzitos com magnetita da Unidade Valadão e charnockitos do Complexo Juiz de Fora.

REFERÊNCIAS

ABREU, S. F. & OLIVEIRA, A. Q.. Pyritas da Fazenda Rio das Canoas, Município de Rio Claro, Estado do Rio de Janeiro. In: Pyrita (Matéria Prima para Indústrias Químicas), Irmãos Pongetti, Rio de Janeiro, p. 20-41, 1934.

ALLDRICK D., & SANGSTER D. "Mississippi Valley-Type (MVT) Pb-Zn Mineral Deposit Profile." Yukon Geological Survey, 2005.

ARMSTRONG, C.H., & LAWRENCE, W. F.. *Geology of U.S. Steel zinc mine*, in Tennessee zinc deposits fieldtrip guidebook: Virginia Technical Institute, Department of Geological Sciences Guidebook, no. 9, p. 63-72, 1983.

AYUSO, R.A., FOLEY, N.K., e BROWN, C.E. Source of lead and mineralizing brines for rossie-type Pb-zn veins in the Frontenac Axis area, New York. Economic Geology and the Bulletin of the Society of Economic Geologists, v. 82, no. 2, April 1987, p. 489-496, 1987.

BEESON, R. Broken Hill type lead-zinc deposits – an over view of their occurrence and geological setting. Institute of Mining and Metallurgy. Transactions, Section B99, p. 163-175, 1990.

BIONDI, João Carlos. *Processos metalogenéticos e os depósitos minerais brasileiros*. São Paulo: Oficina de Textos, 528 p. il. 2003.

BRISKEY, J.A.. Summary of the general geologic characteristics of sandstone-hosted lead-zinc deposits, in Erickson, R. L., ed., Characteristics of mineral deposit occurrences: U.S. Geological Survey Open-File Report 82-795, p. 183-185, 1982.

BIZZI, L. A., SCHOBBENHAUS, V., ROBERTA MARY, GONÇALVES, JOÃO HENRIQUE – *Geologia, tectônica e recursos minerais do Brasil : texto, mapas & SIG* : CPRM – Serviço Geológico do Brasil, 692 p., 2003.

CHAVES, M. L. S. C.. Geologia das mineralizações sulfetadas da região de Lídice (Rio Claro, RJ). Dissertação (Mestrado) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1987.

COOKE, D. R.; BULL, S W.; LARGE; R. R.; AND MCGOLDRICK, P. J., The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (SEDEX) Deposits. Economic Geology. Vol. 95, p. 1–18, 2000.

DIOS, F. R. B. *Geologia, petrologia e metamorfismo dos terrenos de alto grau da porção norte da folha Mangaratiba, escala 1:50.000.* 1995. Dissertação (Mestrado) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 119p, 1995.

DUARTE, B. P. et al. Geochemistry of the granulite fácies orthogneisses of Juiz de Fora Complex, Central Segment of Ribeira Belt, Southeastern Brazil. Revista Brasileira de Geociências, Rio de Janeiro, v. 27, n. 1, p. 67-82, 1997.

EIRADO, L. G. S. A interação entre os eventos tectônicos e a geomorfologia da Região da Serra da Bocaina, Sudeste do Brasil. Tese (Doutorado) — Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2006.

FONSECA, M. J. G.; SILVA, Z. C. G.; CAMPOS, D. A. & TOSATTO, P.. Carta Geológica do Brasil ao Milionésimo, Folhas Rio de Janeiro, Vitória e Iguape, Texto explicativo. MME/DNPM, Brasília, 240p., 1979.

FRANKLIN, J.M. e HANNINGTON, M.D. *Volcanogenic massive sulfides through time*: Geological Society of America, 2002 Annual Meeting, Abstracts with Programs 34; 6, p. 283, 2002.

FRANKLIN, J.M., GIBSON, H.I., JONASSON, I.R., e GALLEY, A.G. *Volcanogenic Massive Sulphide Deposits*: Economic Geology 100th Anniversary Volume, p.523-560, 2005.

GALLEY, Alan,; HANNINGTON, Mark, JONASSON, Ian. *Volcanic massive sulphide deposits*. Geological Survey of Canada, 601 Booth Street, Ottawa, ON, K1A OE8. 2007.

GARVEN, G., BULL, S.W., and LARGE, R.R. *Hydrothermal fluid flow models of stratiform ore genesis in the McArthur Basin, Northern Territory, Australia*: Geofluids, v. 1, no. 4, p. 289–311, 2001.

GOODFELLOW, W.D., LYDON, J.W. e TURNER, R.: *Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits*, in Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., eds., Minerals Deposit Modeling: Geological Association of Canada, Special Paper 40, p. 201-251, 1993.

GOODFELLOW, W.D., & LYDON, J.W. *Sedimentary exhalative (SEDEX) deposits, in* Goodfellow, W.D., ed., Mineral deposits of Canada - A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, p. 163–184, 2007.

HASUI, Y. A grande colisão Pré-cambriana do sudeste brasileiro e a estruturação regional. São Paulo, UNESP, Geociências, v. 29, n. 2, p. 141-169, 2010.

HEILBRON, M., VALERIANO, C. M., VALLADARES, C.S., MACHADO, N.. A orogênese Brasiliana no segmento central da Faixa Ribeira, Brasil. *Rev. Bras. Geoc.* 25:245-266, 1995.

HEILBRON, M., MOHRIAK, W., VALERIANO, C.M., MILANI, E., ALMEIDA, J.C.H., TUPINAMBÁ, M., From collision to extension: the roots of the South-eastern continental margin of Brazil. In: Talwani, Mohriak (Eds.), Atlantic Rifts and Continental Margin. AGU Geophysical Monograph Series, V 115, 354 pp, 2000.

HEILBRON, M. *et al.* A Província Mantiqueira. In: MANTESSO-NETO, B.; CARNEIRO, C. D. R.; BRITO-NEVES (Eds.). *Geologia do Continente Sul-Americano*: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo:. p. 203-234, Beca, 2004.

HEILBRON, M., ALMEIDA, J. C. H, SILVA, L. G. E., PALERMO, N, TUPINAMBÁ, M., DUARTE, B. P., VALLADARES, C., RAMOS, R., SANSON, M., GUEDES, E., GONTIJO, A., NOGUEIRA, J.R., VALERIANO, C., RIBEIRO, A., RAGATKY, *et al. Geologia da Folha Volta Redonda- SF.23-Z-A-V, escala 1:100.000*: nota explicativa integrada com Santa Rita do Jacutinga, Barra do Piraí, Angra dos Reis - Rio de Janeiro/São Paulo: UERJ/CPRM, 2007.

HITZMAN, M.W. Hydrothermal alteration associated with Irish type zinc-lead-(silver) and carbonate-hosted copper deposits: Geological Society of America Abstracts with Programs, v. 28, no. 7, p. 23, 1996.

HITZMAN, M.W. Extensional faults that localized syndiagenetic Zn-Pb deposits and reactivation during Variscan compression: Geological Society of London Special Publication 155, p. 233–245, 1999.

HITZMAN, M.W., & Beaty, D.W. The Irish Zn-Pb-(Ba) orefield, in SANGSTER, D.F., ed., *Carbonate-hosted lead-zinc deposits*: Society of Economic Geologists Special Publication 4, p. 112–143, 1996.

KLEIN, C. & FINK, R.P. Petrology of the Sokoman Iron-Formation in the Howells River area, at the western edge of the Labrador Trough. Economic Geology, 71, 453–487, 1976.

LARGE, R. R., BULL, S. W., MCGOLDRICK, P. J., WALTER, S.. Stratiform and Strata-Bound Zn-Pb-Ag Deposits in Proterozoic Sedimentary Basins, Northern Australia. Society of Economic Geologists, Inc. Economic Geology, 100th Anniversary volume, p. 931-863, 2005.

LARGE, R.R., & MCGOLDRICK, P.J. Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn-Pb-Ag deposits—1. Lady Loretta Deposit, Queensland: Journal of Geochemical Exploration, v. 63, no. 1, p. 37–56, 1998.

LEACH, D.L. & SANGSTER, D.F. *Mississippi Valley-type lead-zinc deposits*, in Kirkham, R.V., Sinclair, W.D., Thorp, R.I., and Duke, J.M., eds., Mineral Deposit Modeling, Geological Association of Canada Special Paper 40, p. 289-314, 1993.

LEACH, D.L., SANGSTER, D.F., KELLEY, K.D., LARGE, R.R., GARVEN, G., AUEN, C.R., GUTZMER, J., e M'ALTERS, S. *Sediment-hosted lead-zinc deposits: A global perspective*: ECONOMIC GEOLOGY1 00T" ANNIVERSARY VOLUME, p. 561-607, 2005.

LEONARDOS, O. H.. Depósitos de pirita de Rio Claro, Estado do Rio de Janeiro. Min. Met., 34: 183-187, 1942.

LYDON, J.W. *Sedimentary exhalative sulphides (SEDEX)*, in Eckstrand, O.R., Sinclair, W.D., and Thorpe, R.I., eds., Geology of Canadian mineral deposit types, p. 130–152, 1995.

LYDON, J.W. Geology of the Belt-Purcell Basin and Sullivan Deposit, in Deb, M., and Goodfellow, W.D., eds., Sediment-hosted lead-zinc sulphide deposits; attributes and models of some major deposits in India, Australia and Canada: New Delhi, Narosa Publishing House, p. 100–148, 2004.

MAYNARD, J.B. *Geochemistry of sedimentary ore deposits*: Springer-Verlag, New York, New York, 305 p, 1983.

MORLAND. R., e WEBSTER, A. E. *Broken Hill lead-zinc-silver deposit*, in *Geology of Australian and Papua New Guinean Mineral Deposits* (Eds: D. A. Berkman and D. H. Mackenzie), p. 619-626 (The Australian Institute of Mining and Metallurgy-Melbourne), 1998.

MCQUEEN, K.G. Ore deposit types and their primary expressions. *Crc leme, Australian National University, Canberra, ACT 0200 and School of REHS, University of Canberra, ACT 2601*,1995.

NOGUEIRA, J.R. Relações tectonoestruturais e metamórficas entre metassedimentos e ortognaisses em fácies granulito na região a sudoeste de Juiz de Fora, MG. IG/UFRJ. Dissertação de Mestrado. 151p, 1994.

PAGE, R.W., CORNOR, C. H. H., STEVENS, B. P. J., Gibson, G. M., Preiss, W. V. & Southgate, P, N. *Correlation fo Olary and Broken Hill Domains, Curnamona Province: Possible relationship to Mount Isa and other North Australian Pb-An-Ag-bearing sucessions.* Economic Geology, 100, p. 663-676, 2005.

PARR, J.M. The geology of the Broken Hill-type Pinnacles Pb-Zn-Ag deposit, Western New South Wales, Australia; Economic Geology, volume 89, p. 778-790, 1994:.

PARR, J.M., & PLIMER, I., R., Models for Broken Hill Type lead-zin-silver deposits. In: Kirkham, R. V., Sinclair, W. D., Thorpe, R.I. & Duke, J. M. (editors), Mineral deposit modeling Geological Association of Canada, Special Paper 40, p. 253-288, 1993.

PARR, J.M., STEVENS, P.J., CARR, G.R. & PAGE, R.W. Subseafloor origin for Broken Hill Pb–Zn–Ag mineralization, New South Wales, Australia. Geology 32, p. 589-592, 2004.

PEREIRA, R. M. Fundamentos de Prospecção Mineral. Ed. Interciência, 2 edição, 348p, 2012.

PLIMER, I.R. *Sulphide rock zonation and hydrothermal alteration at Broken Hill*. Institute of Mining and Metalurgy, Transaction, section B88, p. 161-176, 1979.

RIABI, G. & THEART, H. F. J., Geochemical and mineralogical characteristic of the VHMS alteration pipe, major elements variations and peraluminous ratio, in high grade metamorphosed rocks. Journal of Mining & Environment, Vol.1, No.2, p. 29-36, 2010.

RIOFINEX, Geol. E Pesquisas LTDA. Projeto Rio Claro – Relatório final. 90 p., 1977.

SCHMITT, R. S. Late amalgamation in the central part of Western Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira belt (SE Brazil). Precambrian Research, [S.l.], v. 133, p. 29-61, 2004.

SCHREIBER, B.C., & TABAKH, M. El,. *Deposition and early alteration of evaporites*. Sedimentology. 47 (suppl.) 1, p. 215-238, 2000.

SANGSTER, D.F. *Mississippi Valley-type and SEDEX lead-zinc deposits - a comparative examination*: Transactions of the Institution of Mining and Metallurgy, section B, v. 99, p. B21-B42, 1990.

SANGSTER, D. F. *Mississippi Valley-type lead-zinc*. In Geology of Canadian mineral deposit types, ed. O. R. Eckstrand, W. D. Sinclair, and R. 1. Thorpe, 253-61. Ottawa: Geological Survey of Canada, 1995.

SOUSA, H. C. A.. *Piritas de Rio Claro, Estado do Rio de Janeiro*. DNPM/DFPM, Rio de Janeiro, Bol. 34, 30p, 1939.

SUBBA REDDY, N. & SASHIDHAR, N.. Mineralogy and chemistry of banded iron formation (BIF) of Tituvannamallai area, Tamil Nadu. Earth Planet. Sci. Vol. 98. no 2, 1989.

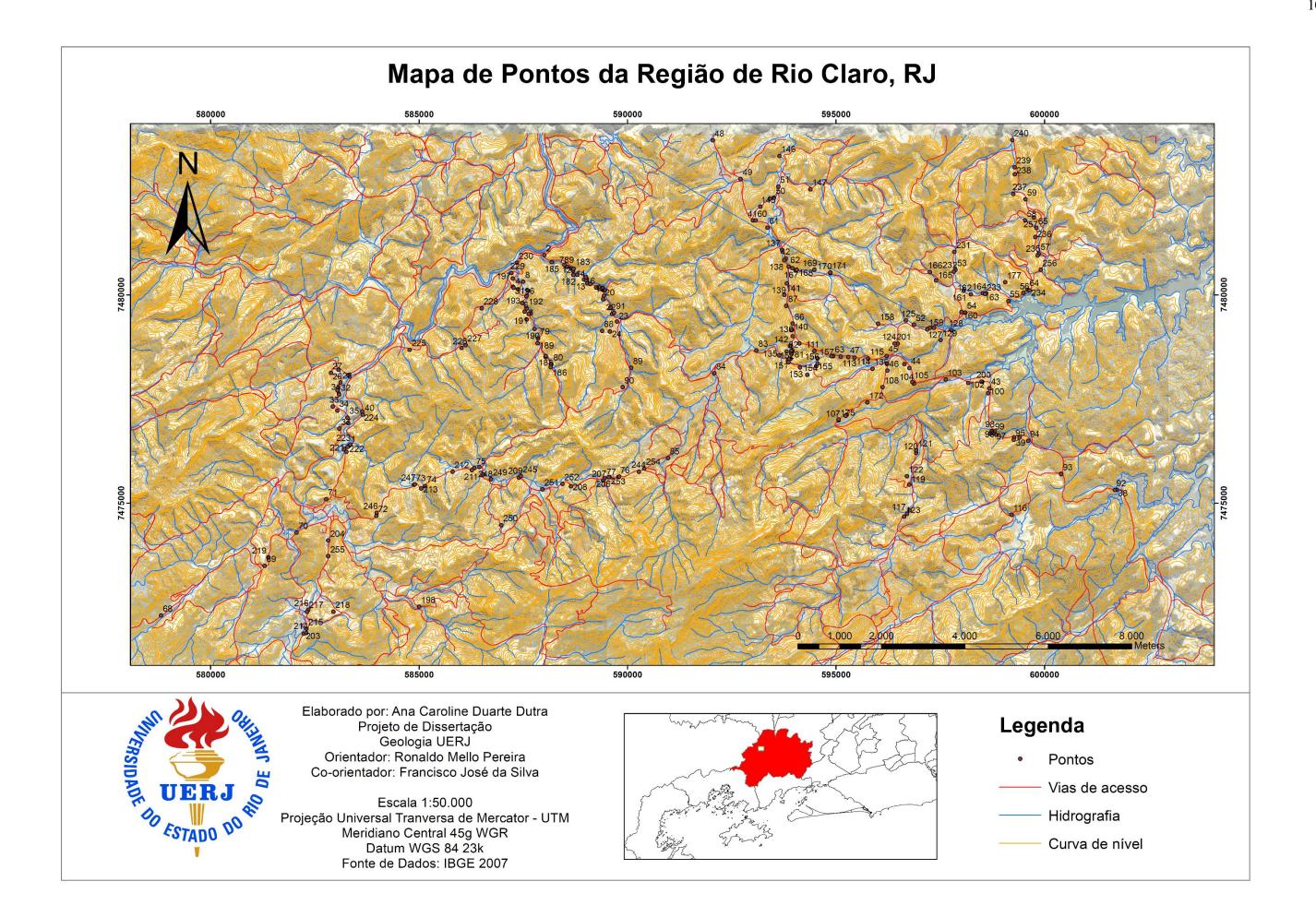
SUSZCZYNSKI, E. F. *Os Recursos Minerais Reais e Potenciais do Brasil e sua Metalogenia*. Livraria Interciência Ltda. Rio de Janeiro, 534 p, 1975.

VALERIANO, C. M. et al. U-Pb geochronology of the southern Brasília belt (SE Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West-Gondwana. Precambrian Research, [S.l.]. v. 130, p. 27-55, 2004.

VALLADARES, C. *et al.* Tectono-magmatic evolution of the Occidental Terrane of the Neoproterozoic Ribeira Orogenic Belt, southeastern Brazil. In: INTERNACIONAL GEOLOGICAL CONGRESS, 31., 2000, Rio de Janeiro. **Abstracts**. Rio de Janeiro: [s.n.], 2000.

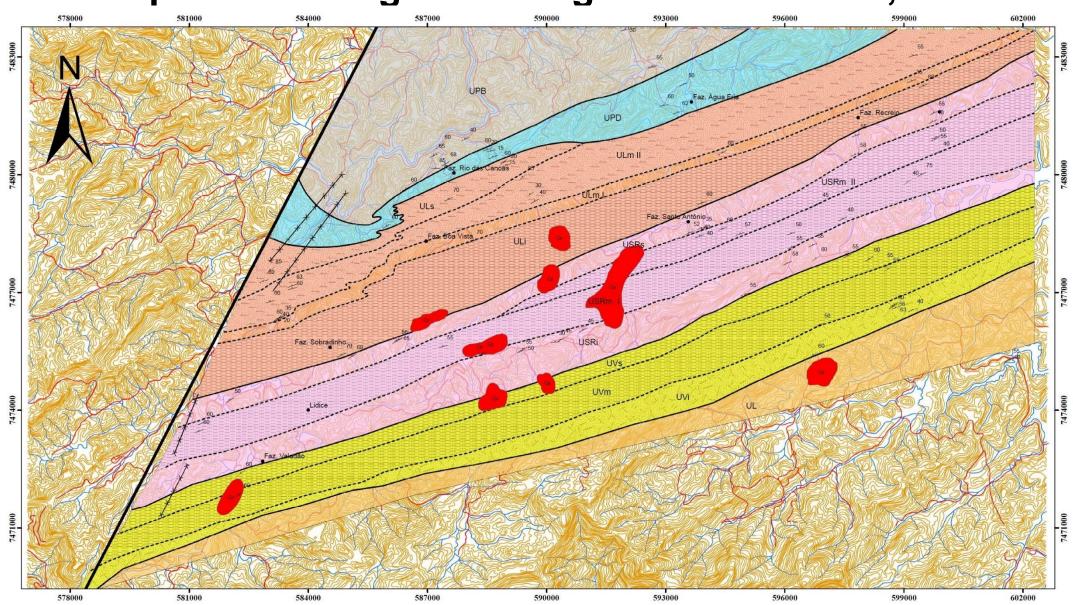
VALLADARES, C. S. et al. Ages of detrital zircon from siliciclastic successions southern of the São Francisco craton, Brazil: implications for the evolution of proterozoic basins. Gondwana Research, v. 7, n. 4, p. 913-921, 2004.

WALTERS, S. G.. Broken Hill Type Pb-Zn-Ag deposits, geological characteristics and exploration models, CODES Master of Economic Geology Course Manual 4, University of Tasmania, 1995.


WILLIAM-JONES A.E., SCHRIJVER K., DIG, R., SANGASTER, D.F. A model for epigenetic Ba-Pb-Zn mineralization in the Appalachian belt, Quebec. Evidence from fluid inclusions and isotopes. Econ. Geol. 87:154 – 174, 1992.

WILLIS, I L, BROWN, R E, STROUD, W J AND STEVENS, B P J. The EarlyProterozoic Willyama Supergroup: stratigraphic subdivision and interpretation of high to low-grade metamorphic rocks in the Broken Hill Block, New South Wales; Journal of the Geological Society of Australla, 30: 195-224, 1983.

YANG, J., BULL, S., e LARGE, R. Numerical investigation of salinity in controlling oreforming fluid transport in sedimentary basins—Example of the HYC Deposit, northern Australia: Mineralium Deposita, v. 39, no. 5–6, p. 622–63, 2004.

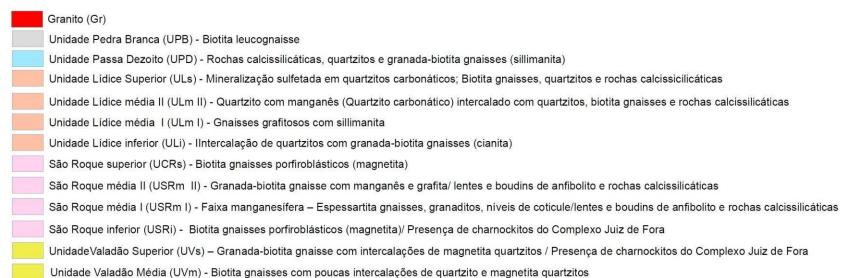

YANG, J., LARGE, R.R., BULL, S., e SCOTT, D.L. Basin-scale numerical modeling to test the role of buoyancy-driven fluid flow and heat transfer in the formation of stratiform Zn-Pb-Ag deposits in the northern Mount Isa Basin: Economic Geology, v. 101, no. 6, p. 1275–1292, 2006.

APÊNDICE A – MAPA DE PONTOS

APÊNDICE B – ESQUEMA GEOLÓGICO

Esquema Geológico da Região de Rio Claro, RJ

Unidade geológicas


Unidade Lorena (UL) - Biotita gnaisse migmatíticos

Elaborado por: Ana Caroline Duarte Dutra Projeto de Dissertação Geologia UERJ Orientador: Ronaldo Mello Pereira Co-orientador: Francisco José da Silva

0 625 1.250 2.500 3.750 5.000 Metros

Escala 1:50.000
Projeção Universal Tranversa de Mercator - UTM
Meridiano Central 45g WGR
Datum WGS 84 23k
Fonte de Dados: IBGE 2007

LEGENDA

Unidade Valadão inferior (UVi) - Quartzitos com intercalações de magnetita quartzitos e poucas faixas de biotita gnaisses

LEGENDA DE ESTRUTURAS

- Toponímia
- roponinia
- Foliacao

APÊNDICE C – DESCRIÇÃO DAS LÂMINAS DELGADAS

Em relação aos litotipos presentes na área, foram descritas 16 lâminas delgadas, sendo 10 delas oriundas de protólito pelítico, constituído principalmente por gnaisses grantíferos, rochas calcissilicáticas e quartzitos impuros. As outras 6 lâminas delgadas restantes, compreendem representantes ortoderivados tais como hornblenda biotita gnaisses e charnokitos.

Lâmina Ac-56	Unidade: São Roque M	lédia I
Rocha: Granada-	biotita gnaisse	Textura: granolepidoblástica
Descrição	ortoclásio (15%), gran opaco (1%). Microsco textura granolepidoblási de ortoclásio (15%) e pl de biotita (15%), gran Quartzo, ortoclásio, po xenomórficos e extinção orientadas, ocorrendo e granada ou na forma o calcita, sericita e mo	clásio (20%), quartzo (26%), biotita (18%), ada (12%),moscovita (4%), carbonato (4%) e opicamente apresenta matriz recristalizada de tica composta por quartzo (26%), porfiroclastos lagioclásio (20%), geralmente sericitizados, além ada (12%) e um pouco de sillimanita (3%). lagioclásio exibem cristais hipidiomórficos a o ondulante. A biotita aparece em forma de ripas também, nas bordas dos cristais anedrais de de inclusões na mesma. Ainda estão presentes, scovita fibroradiada, que contituem minerais lteração dos feldspatos, e neste caso, indicador lo.

Lâmina Ac-133	Unidade: São Roque M	lédia II
Rocha: Granadito	(Exalito)	Textura: Granoblástica
Descrição	diopsídio (23%), qua moscovita (2%) e miner marrom, hábito granu inclusões não obedeces textura denominada <i>per</i> cristais xenoblásticos e granada. Diopsídio tam clivagem típica, em du quando comparado a confere a rocha uma tex cristais xenoblásticos a	pastante peculiar, constituída por granada (55%), rizo (12%), titanita (3%), carbonato (3%), rias opacos (1%). A granada apresenta coloração lar típico e é poiquilítica, entretando, suas m nenhuma orientação, conferindo a ela uma neira. O quartzo é encontrando na matriz como na forma de inclusões dentro dos cristais de bém ocorre como cristais granulares e apresenta las direções, no entanto, possui menor relevo granada. A maior proporção desses minerais, atura granoblástica. A titanita é encontrada como alongados, associados ao diopsídio. Carbonato, erais opacos são minerais acessórios.

	DESCRIÇÃO SIMPLIFICADA DAS LÂMINAS PETROGRÁFICAS PARADERIVADAS				
LÂMINAS	UNIDADE	ROCHA	MINERALOGIA PRINCIPAL	TEXTURA	
AC-56	São Roque Média I	Granada-biotita gnaisse	Plagioclásio (20%), quartzo (26%), biotita (18%), ortoclásio (15%), granada (12%),moscovita (4%), carbonato (4%) e opaco (1%).	Granolepidoblástica	
AC-133	São Roque Média II	Granadito	Granada (55%), diopsídio (23%), quartzo (12%), titanita (4%), opacos (1%), moscovita (2%) e carbonato (3%).	Granoblástica	
AC-46	São Roque Superior	Magnetita quartzito	Quartzo (68%) e magnetita (32%).	Granoblástica inequigranular	
AC-189	Lídice Superior	Gnaisse calcissilicático	Diopsídio (36%), hiperstênio (7%), actinolita (10%), plagioclásio (18%), quartzo (14%) e microclina (7%), titanita (4%), biotita (3%) e carbonato (1%)	Granonematiblástica	
AC-36	Lídice Superior	Biotita gnaisse com sulfetos	Biotita (17%), ortoclásio (%18), plagioclásio (25%), quartzo (38%), opacos (1%) e moscovita (1%)	Granolepidoblástica	
AC-182	Lídice Superior	Quartzito carbonático	Quartzo (64%), carbonato (23%) e um pouco de hiperstênio (5%).		
AC-194	Lídice Superior	Rocha calcissilicática	Diopsídio (48%), quartzo (15%), microclina (9%), plagioclásio (8%), carbonato (7%), titanita (4%), hornblenda (3%), biotita (3%), opacos (3%),zoizita (%), annita (1%)	Granoblástica	
AC-178	Lídice Superior	Quartzito feldspático	quartzo (74%), plagioclásio e ortoclásio (23%), moscovita (2%), diopsídio (1%), biotita (1%)	Granonematoblástica	
AC-185	Passa Dezoito	Rocha calcissilicática	Quartzo (24%), diopsídio (19%), hornblenda (4%), plagioclásio (37%), ortoclásio (9%), titanita (2%), opacos (3%) e zoizita (2%)	Granoblástica	
AC-196	Passa Dezoito	Granada-biotita gnaisse com sulfetos	Ortoclásio (12%), biotita (28%), quartzo (36%), granada (5%), plagioclásio (22%) e carbonato (3%).	Granolepidoblástica	
	TABEL	A - DESCRIÇÃO SIMPI	LIFICADA DAS LÂMINAS PETROGRÁFICAS ORTODERIVADAS		
LÂMINAS	UNIDADE	ROCHA	MINERALOGIA PRINCIPAL	TEXTURA	
AC-105	São Roque Inferior	Charnockito com magnetita	Quartzo (17%), biotita (11%), hornblenda (9%), plagioclásio (28%), hiperstênio (7%), Opacos (8%), moscovita (2%) e carbonato (3%).	Granolepidoblástica	
AC-47	São Roque Média I	Hornblenda biotita gnaisse	Biotita (35%), quartzo (28%), plagioclásio (20%), hornblenda (8%), diopsídio (5%), carbonato (2%), opacos (2%), apatita (1%).	Lepidoblástica	
AC-174	São Roque Inferior	Rocha calcissilicática	Diopsídio (43%), plagioclásio (36%), hornblenda (6%), opacos (4%)	Granonematoblástica	
AC-111	São Roque Média II	Charnockito	Plagioclásio (20%), quartzo (28%), biotita (23%), moscovita (12%), hornblenda (8%), diopsídio (5%)	Hornblenda biotita gnaisse	
AC-152	São Roque Média II	Charnockito	Plagioclásio (38%), hiperstênio (30%), hornblenda (4%), quartzo (7%), opacos (3%)	Granoblástica inequigranular	
AC-53	São Roque Superior	Charnockito com magnetita	Plagioclásio (32%), quartzo (25%), microclina (18%), magnetita (12%), biotita (7%), hornblenda (5%), diopsídio (3%) e calcita e siderita (1%)	Protomilonítica	

Lâmina Ac-46	Unidade: São Roque Superior	
Rocha: Quartzito	com magnetita	Textura: granoblástica inequigranular
Descrição	extinção ondulante e alteração de coloração como traço (vermel alongadas descontínu	encialmente por quartzo xenoblástico com magnetita (apresenta-se por vezes rodeado de o avermelhada, originado da magnetita). Rutilo lho). A magnetita forma delgadas faixas as e subordinadamente observa-se trilhas de de fraturas também. Granulação muito grossa,

Lâmina Ac-189	Unidade: <i>Lídice Méd</i>	liaII
Rocha: Gnaisse ca	alcissilicático	Textura: granonematoblástica
Descrição	granonematoblástica diopsídio (36%) e hi pela actinolita (10%). e clivagem perfeita e amarelada e exibe cactinolita exibe cor y minerais félsicos são (14%) e microclina (4%) e bioti da Rocha, podendo	o gnaisse calcissilicático possui textura marcada pela predominância dos piroxênios, perstênio (7%), e do anfibólio, representado O diopsídio apresenta coloração acastanhada m duas direções, o hiperstênio tem coloração clivagem imperfeita em uma direção, já a erde claro com clivagem pouco aparente. Os representados por plagioclásio (18%), quartzo (7%), constituindo a porção granular da trama. ta (3%) compreendem fases acessórias dentro ser vistos dispersos por toda a lâmina. O e como produto da alteração dos plagioclásio

Lâmina Ac-36	Unidade: Lídice Superior	
Rocha: Biotita gnaisse (paragnaisse)		Textura: granolepidoblástica
Descrição	plagioclásio seguido sericitizado e o orto hipidiomórficos. Gra xenoblástica dando ocorre como prováve	rsas na matriz. O feldspato predominante é o de ortoclásio. Plagioclásio apresenta-se oclásio ocorre na forma de grandes cristais ande quantidade de quartzo com forma a textura granoblástica. Moscovita esparsa, el produto da alteração retrógrada da biotita, almente na forma de nucleações e alterações na etos disseminados.

Lâmina Ac-182	Unidade: Lídice Superior	
Rocha: Quartzito carbonático		Textura: granoblástica
Descrição	vezes, mostra textur da Rocha. Com predominantemente pouco de hiperstênio ocorre como mineral conteúdo de minera	áfica, apresenta textura granoblástica, por ra poligonal, devido a intensa recristalização aposição mineralógica básica constituída por quartzo (64%), carbonato (23%) e um (5%), que ocorre disperso na matriz. Titanita acessório, normalmente, junto da calcita. O ais opacos é bastante variável na Rocha, m questão, ocorre como mineral traço.

Lâmina Ac-194	Unidade: <i>Lídice Sup</i>	erior
Rocha: Calcissilio	cática	Textura: granonematoblástica
Descrição	Composição mineralo (15%), microclina (titanita (4%), hornble (1%), annita (<1%). O polissintética, a calc clivagem do plagioc	apresenta textura granonematoblástica. ógica constituída diopsídio (48%), quartzo 9%), plagioclásio (8%), carbonato (7%), nda (3%), biotita (3%), opacos (3%),zoizita Os cristais de zoizita apresentam geminação ita ocorre como pequenas nucleações na lásio. O mineral annita, biotita vermelha ocorre de forma isolada.

Lâmina Ac-178	Unidade: Lídice Superior	
Rocha: Quartzito	feldspático	Textura: granoblástica inequigranular
Descrição	por de quartzo (7 subordinadamente, sa biotita (1%). A mosc com a biotita, que é	apresentam textura granoblástica composta 4%), plagioclásio e ortoclásio (22%), e ão observados moscovita (2%), hiperstênio e covita ocorre como mineral secundário, assim é observada como produto da alteração do estas, associadas ao retrometamorfismo.

Lâmina Ac-185	Unidade: Passa Dezoito	
Rocha: Calcissilicática		Textura: granonematoblástica
Descrição	(24%), diopsídio (1	granonematoblástica composta por quartzo 9%), hornblenda (4%), plagioclásio (37%), aita (2%), opacos (3%) e zoizita (2%).

Lâmina Ac-196	Unidade: Passa Dezo	ito
Rocha: Granada- sulfetos	biotita gnaisse com	Textura: granolepidoblástica
Descrição	quartzo (36%), grana (3%), numa matriz d encontra-se sericitizaç sinais de sericitizaç possivelmente, secun	nída de ortoclásio (12%), biotita (28%), ada (5%), plagioclásio (22%) e carbonato e textura granolepidoblástica. O ortoclásio do, assim como o plagioclásio, que mostra o, inclusive na geminação. O carbonato é, dário pois encontra-se disposto entre os quartzo, cimentando os poros da Rocha.

Lâmina Ac-105	Unidade: São Roque Inferior	
Rocha: Charnock	xito	Textura: granolepidoblástica
Descrição	por plagioclásio (28% (11%), hornblenda (9 secundariamente occisulfetos. A trama da elongação dos mineral além dos óxidos e diminutos formando minerais félsicos, en substituição mineral desestabilização de plotita, provavelme retrógrado. Os sulfet como resultado de maioria dos aspectos evidências que suger	esta Rocha apresenta textura inequigranular, e mineralogia constituída o), quartzo (17%), ortoclásio (15%), biotita o%), magnetita (8%), hiperstênio (7%), e orrem calcita (3%), moscovita (2%) e Rocha apresenta-se orientada consoante a is máficos, hornblenda, hiperstênio e biotita, minerais fitados. São observados cristais o uma esteira de subgrãos, fomado por a meio às fitas de quartzo. Reações de também foram observadas, promovendo a piroxênios que dão lugar a hornblenda e ente ligada a eventos de metamorfismo os ocorrem disseminados, provavelmente, um processo de remobilização tardia. A es supracitados, compõem um quadro de rem estágios de recristalização no estado netamorfismo de alto grau.

Lâmina Ac-047	Unidade: São Roque Média I	
Rocha: (Hornble	nda) biotita gnaisse	Textura: Lepidoblástica
Descrição	(8%), diopsídio (5% (1%).Matriz recrista composta por qui plagioclásio. O quart levemente alongado predominante, ocor substituindo, muitas metamorfismo retró	tzo (28%), plagioclásio (20%), hornblenda 6), carbonato (2%), opacos (2%), apatita alizada inequigranular granolepidoblástica artzo biotita, hornblenda, diopsídio e ezo é encontrado como cristais xenoblásticos es. A biotita constitui o mineral máfico rendo como cristais placóides ou ripas vezes, os cristais de hornblenda, produto de grado. Hornblenda ocorre substituindo o tato é secundário e a apatita se encontra

Lâmina Ac-174	Unidade: São Roque Inferior		
Rocha: Calcissilio	cática	Textura: granonematoblástica	
Descrição	plagioclásio, exibin granulometria variand quantidades que ating e hornblenda, são fas substituindo o clinop agregados contínuos grãos de plagioclásic ondulante, e são ob deformação. Hornble substituindo piroxêni	mada essencialmente por diopsídio (43%) e do textura granonematoblástica, com o de fina a média. O plagioclásio ocorre em em até 36%, outros minerais como, opacos es que aparecem como traços, este último iroxênio. Os cristais de piroxênio formam com espaços intersticiais preenchidos por o. O plagioclásio apresenta forte extinção servados subgrãos originados de intensa enda aparece em até 6%, ocorrendo os a partir de suas bordas e clivagens. exsolvidos e dispostos segundo a clivagem de diopsídio.	

Lâmina Ac-111 Unidade: São Roque Média I Rocha: Charnockito Textura: granonematoblástica Descrição Possui textura granonematolepidoblástica inequigranular formada por plagioclásio (20%), quartzo (28%), biotita (23%), moscovita (12%), hornblenda (8%), diopsídio (5%). A hornblenda, biotita e moscovita ocorrem em quantidades variáveis na Rocha, como produto da alteração do clinopiroxênio. O carbonato está presente como produto da alteração do plagioclásio, enquanto turmalina, apatita e sulfetos encontram-se disseminados, constituindo fases acessórias na trama. A moscovita ocorre em grande quantidade na matriz da Rocha, no entanto, a forma como está disposta, preenchendo os interstícios da Rocha de forma pouco orientada, geralmente próximo ao piroxênio, sugere uma origem secundária, provavelmente relacionada a processos metassomáticos tardios, visto a ocorrência de corpos graníticos geradores de pegmatitos na região. São também observados intercrescimentos plagioclásio e moscovita nos minerais opacos, conferindo, localmente, uma textura simplectitítica, associado a reações retrometamórficas regionais.

Lâmina Ac-152	Unidade: São Roque Média II			
Rocha: Charnock	xito	Textura: granonematoblástica inequigranular		
Descrição	1			

Lâmina Ac-053	Unidade: São Roque Superior		
Rocha: Magnetita	gnetita biotita gnaisse Textura: Protomilonítica		
Descrição	protomilonítica forma quartzo (25%), micr hornblenda (5%) e quantidade variável (a junto com as ripas minerais secundários também porfiroclast sericitizados e com ex minerais félsicos. Fita associadas a process substituição de diopsíc através do processo encontram distribuída de biotita. Os carbon	o biotita gnaisse apresenta textura ada essencialmente por plagioclásio (32%), oclina e ortoclásio (18%), biotita (7%), diopsídio (3%). A magnetita ocorre em até 12%), distribuídas em trilhas, orientadas de biotita. A calcita e siderita (1%) são na trama. São observados quartzo fitado, e os de ortoclásio e microclina, por vezes, tinção ondulante, rodeados por subgrãos de se de quartzo são comuns, bem como reações sos retrometamórficos, evidenciados pela dio por hornblenda e hornblenda por biotita, de hidratação. Cristais de magnetita se se em trilhas, orientadas junto com as ripas atos ocorrem como minerais secundários, oração verde, apresenta intercrescimento de	

APÊNDICE D - TABELA DE PONTOS

TABELA DE PONTOS			
PONTO	Litologia	Coordenada N	Coordenada E
AC-01	Quartzito	583322	7476382
AC-02	Rocha calcissilícática	588002	7480954
AC-03	Biotita gnaisse	587252	7480196
AC-04	Quartzito com manganês	587270	7480171
AC-05	Pegmatito com turmalina	587682	7479563
AC-06	Gossan	587533	7479598
AC-07	Quartzito com manganês	587579	7479412
AC-08	Quartzito	587498	7480320
AC-09	Biotita gnaisse migmatítico	588554	7480677
AC-10	Rocha calcissilícática	588650	7480635
AC-11	Dique de diabásio	588692	7480585
AC-12	Quartzito	588701	7480483
AC-13	Quartzito com manganês	588954	7480369
AC-14	Quartzito com manganês	589006	7480354
AC-15	Quartzito com manganês	589038	7480276
AC-16	Gossan	589254	7480179
AC-17	Biotita Gnaisse	589326	7480147
AC-18	Quartzito com manganês	589424	7480117
AC-19	Quartzito com magnetita	589433	7479985
AC-20	Biotita Gnaisse	589418	7479899
AC-21	Quartzito com manganês	589592	7479696

AC-22	Biotita Gnaisse	589629	7479546
AC-23	Biotita Gnaisse	589746	7479361
AC-24	Biotita Gnaisse	589580	7479122
AC-25	Dique de diabásio	583308	7478073
AC-26	Biotita gnaisse	583073	7478208
AC-27	Bioita gnaisse	582888	7478129
AC-28	Quartzito	583116	7477902
AC-29	Dique de diabásio	583058	7477770
AC-30	Dique de diabásio	583046	7477710
AC-31	Moscovita xisto crenulado	583078	7477633
AC-32	Moscovita xisto crenulado	583083	7477612
AC-33	Quartzito com manganês	582931	7477323
AC-34	Dique de diabásio	583040	7477223
AC-35	Biotita gnaisse com sulfetos	583284	7477056
AC-36	Biotita gnaisse com sulfetos	583299	7476928
AC-37	Biotita Gnaisse	583089	7476793
AC-38	Biotita gnaisse milonitizado	601718	7475324
AC-39	Quartzito com moscovita	599269	7476584
AC-40	Biotita gnaisse com sulfetos	583653	7477129
AC-41	Granada-biotita gnaisse	593009	7481789
AC-42	Quartzito com moscovita	593796	7480875
AC-43	Granada-biotita gnaisse	598676	7477760
AC-44	Ortogranulito com magnetita	596759	7478246
AC-45	Quartzito maciço	596212	7478538

AC-46	Magnetita quartzito	596231	7478186
AC-47	Biotita gnaisse	595294	7478512
AC-48	Biotita gnaisse	592047	7483710
AC-49	Quartzito com moscovita	592713	7482782
AC-50	Quartzito	593511	7482336
AC-51	Dique de diabásio	593616	7482602
AC-52	Granada-biotita gnaisse	596869	7479286
AC-53	Biotita gnaisse porfiroblástico com magnetita	597865	7480604
AC-54	Granada-biotita gnaisse	598095	7479580
AC-55	Granada-biotita gnaisse	599134	7479855
AC-56	Granada-biotita gnaisse	599494	7480047
AC-57	Granada-biotita gnaisse	599862	7480990
AC-58	Granada-biotita gnaisse	599533	7481788
AC-59	Quartzito	599540	7482296
AC-60	Granada-biotita gnaisse	593071	7481789
AC-61	Sillimanita-granada-biotita gnaisse	593356	7481616
AC-62	Quartzito	593861	7480680
AC-63	Granada-biotita gnaisse	594929	7478532
AC-64	Biotita gnaisse com sulfetos	599597	7480126
AC-65	Biotita gnaisse porfiroblástico com magnetita	599805	7481611
AC-66	Sillimanita granada-biotita gnaisse	599323	7484327
AC-67	Granitóide	577630	7471638
AC-68	Granitóide	578812	7472311
AC-69	Granada-biotita gnaisse	581297	7473500
AC-70	Biotita gnaisse porfiroclástico	582064	7474298
AC-71	Quartzito (avermelhado)	582774	7475101
AC-72	Biotita gnaisse porfiroclástico	583976	7474701

AC-73	gnaisse com cianita	584882	7475445
AC-74	Granada-biotita gnaisse	585144	7475412
AC-75	Granada-biotita gnaisse	586327	7475847
AC-76	Granada-biotita gnaisse	589781	7475634
AC-77	Granada-biotita gnaisse	589452	7475599
AC-78	Quartzito	588002	7480954
AC-79	quartzito	587857	7478962
AC-80	Granada-biotita gnaisse	588175	7478337
AC-81	Granada-biotita gnaisse	593958	7478644
AC-82	Coticule	593818	7478644
AC-83	Coticule	593090	7478668
AC-84	Granito	592080	7478122
AC-85	Granada-biotita gnaisse	590972	7476086
AC-86	Gnaisse porfiroblástico	593962	7479315
AC-87	Quartzito	593805	7479741
AC-88	Biotita gnaisse	589391	7479140
AC-89	Granito	590085	7478252
AC-90	Quartzito	589883	7477787
AC-91	Granito	589677	7479574
AC-92	Biotita gnaisse com granada	601684	7475318
AC-93	Biotita gnaisse com granada	600397	7475702
AC-94	Quartzito com moscovita	599607	7476502
AC-95	Quartzito com magnetita	599261	7476528
AC-96	Quartzito com moscovita	598846	7476647
AC-97	Granada-biotita gnaisse	598801	7476730
AC-98	Quartzito com magnetita	598731	7476735
AC-99	Granada-biotita gnaisse	598766	7476683
AC-100	Ortogranulito	598648	7477645

AC-101	Quartzito com magnetita	598502	7477918
AC-102	Ortogranulito	598168	7477890
AC-103	Biotita gnaisse milonitizado	597632	7477973
AC-104	Biotita gnaisse com granada	596871	7477871
AC-105	Ortogranulito com magnetita	596828	7477910
AC-106	Biotita gnaisse com granada	596640	7478343
AC-107	Biotita gnaisse com magnetita	595062	7476990
AC-108	Biotita gnaisse milonitizado com magnetita	596116	7477788
AC-109	Anfibolito		
AC-110	Coticule	594122	7478836
AC-111	Biotita gnaisse com sulfetos (charnockito)	594481	7478654
AC-112	Biotita gnaisse	594892	7478535
AC-113	Biotita gnaisse	595114	7478522
AC-114	Granada-biotita gnaisse	595444	7478495
AC-115	granada-biotita gnaisse	595770	7478475
AC-116	Biotita gnaisse	599207	7474727
AC-117	Granito	596705	7474750
AC-118	Dique de diabásio	596763	7474832
AC-119	Quartzito com magnetita	596756	7475451
AC-120	Biotita gnaisse	596926	7476209
AC-121	Granada-biotita gnaisse	596924	7476273
AC-122	Quartzito	596700	7475650
AC-123	Dique de diabásio	596630	7474680
AC-124	Quartzito	596479	7478834
AC-125	Anfibolito	596676	7479387
AC-126	Granada-biotita gnaisse	597248	7479209
AC-127	Anfibolito	597347	7479209

AC-128	Granada-biotita gnaisse	597760	7479160
AC-129	Biotita gnaisse com magnetita	597508	7478917
AC-130	Biotita gnaisse	593962	7479013
AC-131	Anfibolito	593916	7478782
AC-132	Biotita gnaisse com magnetita	593949	7478676
AC-133	Granadito e anfibolito	593908	7478470
AC-134	Granada-biotita gnaisse	593846	7478421
AC-135	Granada-biotita gnaisse	593637	7478549
AC-136	Granada-biotita gnaisse	595873	7478230
AC-137	Quartzito	593705	7481080
AC-138	Quartzito	593755	7480837
AC-139	Granito	593820	7480279
AC-140	Biotita gnaisse porfiroblástico	593939	7479166
AC-141	Biotita gnaisse	593761	7480002
AC-142	Biotita gnaisse com manganês e grafita	593893	7478773
AC-143	Biotita gnaisse com moscovita	594026	7480588
AC-144	Quartzito	593416	7482309
AC-145	Quartzito	593185	7482118
AC-146	Biotita gnaisse	593642	7483336
AC-147	Quartzito	594386	7482536
AC-148	Quartzito	598727	7476720
AC-149	Calcissilicática	593925	7478654
AC-150	Anfibolito	593925	7478597
AC-151	Anfibolito	593875	7478470
AC-152	Anfibolito	593858	7478383
AC-153	Anfibolito	594135	7478263
AC-154	Gondito	594313	7478085
AC-155	Quartzito	544524	7478293

AC-156	Granada biotia gnaisse	594559	7478360
AC-157	Biotita gnaisse	594559	7478472
AC-158	Anfibolito	596008	7479312
AC-159	Anfibolito	597188	7479174
AC-160	Calcissilicática	598008	7479590
AC-161	Anfibolito	598060	7480102
AC-162	Anfibolito	598234	7480015
AC-163	Anfibolito	598520	7480041
AC-164	Anfibolito	598602	7480043
AC-165	Anfibolito	597400	7480350
AC-166	Biotita gnaisse	597250	7480550
AC-167	Quartzito	593955	7480643
AC-168	Biotita gnaisse com grafita	594057	7480607
AC-169	Biotita gnaisse com grafita	594481	7480607
AC-170	Quartzito	594863	7480525
AC-171	Quartzito	594863	7480541
AC-172	Biotita gnaissse com magnetita	595751	7477424
AC-173	Quartzito	595255	7477123
AC-174	Rocha calcissilicática	595232	7477104
AC-175	Anfibolito	595061	7477013
AC-176	Quartzito com manganês	589003	7480426
AC-177	Quartzito	599052	7480307
AC-178	Quartzito com manganês	589105	7480266
AC-179	Gossan	589314	7480199
AC-180	Quartzito carbonático	589409	7480161
AC-181	Quartzito com manganês	589453	7480113
AC-182	Quartzito carbonático	588790	7480483
AC-183	Biotita gnaisse	588705	7480630

AC-184	Quartzito	588484	7480727
AC-185	Quartzito	588180	7480786
AC-186	Gnaisse grafitoso	588157	7478271
AC-187	Gnaisse grafitoso	588038	7478510
AC-188	Quartzito	588037	7478538
AC-189	Gnaisse calcissilicático	587844	7478841
AC-190	Quartzito	587770	7479185
AC-191	Quartzito com manganês	587634	7479544
AC-192	Biotita gnaisse	587579	7479677
AC-193	Quartzito	587478	7479806
AC-194	Quartzito carbonático	587608	7480109
AC-195	Gossan	587577	7479970
AC-196	Granada-biotita gnaisse	587375	7480136
AC-197	Quartzito	587250	7480398
AC-198	Ferroexalito	585001	7472523
AC-199	quartzito com magnetita	599401	7476581
AC-200	granulito com magnetita	598488	7477920
AC-201	granadito	596407	7478832
AC-202	Quartzito com magnetita/coticule	598692	7476671
AC-203	Biotita gnaisse	582238	7471872
AC-204	Biotita gnaisse	582823	7474109
AC-205	Granada-biotita gnaisse	589799	7475641
AC-206	Granada-biotita gnaisse	589565	7475629
AC-207	Biotita gnaisse porfiroblástico	589413	7475546
AC-208	Biotita gnaisse porfiroblástico	588643	7475407
AC-209	Granada-biotita gnaisse	587395	7475617
AC-210	Granito	586542	7475691
AC-211	Biotita gnaisse	586266	7475800

AC-212	Quartzito	585807	7475760
AC-213	quartzito	585054	7475357
AC-214	Biotita gnaisse com magnetita	582297	7471891
AC-215	Granito	582303	7471992
AC-216	Biotita gnaisse com magnetita	582343	7472443
AC-217	Anfibolito	582314	7472399
AC-218	Biotita gnaisse ultramilonítico com magnetita	582949	7472400
AC-219	Biotita gnaisse porfiroblástico	581384	7473704
AC-220	Granulito	583203	7476305
AC-221	Quartzito	583258	7476240
AC-222	Biotita gnaisse	583287	7476351
AC-223	Quartzito	583356	7476410
AC-224	Biotita gnaisse com sulfetos	583639	7477202
AC-225	Biotita gnaisse porfiroblástico	584775	7478683
AC-226	Biotita gnaisse	586024	7478730
AC-227	Quartzito	586115	7478796
AC-228	Biotita gnaisse	586504	7479682
AC-229	Quartzito	587217	7480528
AC-230	Quartzito	587347	7480775
AC-231	Biotita gnaisse porfitoblástico	597840	7481034
AC-232	Granada-biotita gnaisse	597825	7480560
AC-233	Calcissilicática	598571	7480022
AC-234	Granulito	599643	7480107
235	Granada biotia gnaisse	599831	7480947
AC-236	Biotita gnaisse porfiroblástico	599777	7481392
AC-237	Biotita gnaisse	599248	7482426
AC-238	Granito	599288	7482897
AC-239	Biotita gnaisse migmatítico	599282	7483065

AC-240	Quartzito	599225	7483721
AC-241	Quartzito ou calcissilicática	599336	7484181
AC-242	Biotita gnaisse	599307	7884941
AC-243	Biotita gnaisse	599730	7485590
AC-244	Biotita gnaisse milonítico	590271	7475761
AC-245	Sillimanita granada-biotita gnaisse	587446	7475654
AC-246	Quartzito	583985	7474773
AC-247	Quartzito	584899	7475455
AC-248	Biotita gnaisse	586449	7475869
AC-249	Biotita gnaisse	586726	7475579
AC-250	Granito	586972	7474479
AC-251	Granito	587959	7475337
AC-252	Bioitita gnaisse	588440	7475467
AC-253	Granada biotita ganisse	589555	7475629
AC-254	Biotita gnaisse com magnetita	590400	7475833
AC-255	Quartzito	582823	7473730
AC-256	Sillimanita granada-biotita gnaisse	599909	7480606
AC-257	Sillimanita granada-biotita gnaisse	599744	7481861