Verifica-se a intercalação de camadas de coloração esverdeada com camadas de coloração rosa (Fig. 25).

Figura 25 – Imagem de rocha metacarbonática da Formação Serra do Poço Verde.

Legenda: Metadolomito laminado com intercalação de estratos cinza e rosados (Amostra MOC - 558A). Fonte: A AUTORA, 2015.

São dolarenito classificados como packstone (DUNHAM, 1962) com pouca matriz carbonática. Ocorrem clastos de carbonato, quartzo, de minerais opacos cúbicos (magnetita) e alguma mica branca (Fig. 26).

Figura 26 – Imagem de lâmina delgada com polarizadores cruzados de amostra da Formação Serra do Poço Verde.

Legenda: Fotomicrografia de dolarenito com matriz carbonáticas muito fina (1), mas que ainda permite a identificação de grãos de quartzo e mica branca (Lâminas MOC – 623A).
Fonte: A AUTORA, 2015.

As rochas da Formação Morro do Calcário ocorrem ao longo de uma faixa N-S na porção central da área de estudos (APÊNDICE B).

Os afloramentos são observados em paredões rochosos que compõem encostas ou ao longo de baixadas como afloramentos isolados no meio do campo.

Normalmente, as rochas dessa formação se encontram sã ou muito pouco alterada com crosta de alteração intempérica de coloração preta ou avermelhada. Quando muito alterada, observa-se um saprólito que varia de amarelo claro a vermelho dependendo de sua composição carbonáticas.

É uma unidade caracterizada por metadolomitos estromatolíticos com intercalações subordinadas de ardósia cinza (Fig. 27).

Os metadolomitos apresentam: coloração cinza-azulada e granulometria grossa; feições de silicificação evidentes com chert disseminado; estruturas primárias de esteiras algais, que condicionam a estratificação/laminação (Fig. 27B); níveis de quartzo microcristalino paralelos ou não ao acamamento sedimentar carbonático; veios de quartzo concordantes e discordantes a foliação principal D2; e, muitas estruturas de dissolução características da percolação de água, algumas das quais com precipitação de carbonatos e óxidos de ferro.

Os estromatólitos são do tipo colunar (Fig. 27C e 27D).

Figura 27 - Imagens de metadolomitos da Formação Morro do Calcário.

Legenda: (A e B) Laminação algal em metadolomito (Ponto MOC – 561); (C) Estromatólito colunar em planta (MOC – 586); (D) Estromatólito colunar em perfil (MOC – 586). Fonte: A AUTORA, 2015.

Os metadolomitos dessa formação são dolorruditos ou boundstones (DUNHAM, 1962) com cimentação carbonática envolvendo bolsões de cristais de carbonato e quartzo, bem como minerais opacos cúbicos (magnetita) e circulares e, oóides, pelóides e grãos agregados (Fig. 28). Microfalhas deslocando a laminação algal são observadas.

Figura 28 – Imagens de lâminas delgadas de metadolomitos da Formação Morro do Calcário.

Legenda: (A) Com polarizadores paralelos. Metadolomito com esteiras algais, fragmentos líticos (1), oólitos (2) e pelóides (3) (Lâmina MOC – 044C); (B) Com polarizadores cruzados. Metadolomito com esteiras algais e agregados de carbonato (4) (Lâmina MOC – 044C); (C) Com polarizadores cruzados. Agregados de carbonato e quartzo (5) (Lâmina MOC – 044C); (D) Com polarizadores cruzados. Contato entre crescimento bioclástico (6) e cristais de carbonato em boundstone (7) (Lâmina MOC – 581).

Fonte: (A) e (B) adaptado de CARVALHO, 2013; (C e D) A AUTORA, 2015.

As intercalações de ardósia cinza apresentam coloração variando de cinza-azulado, quando fresca, a amarelada, quando pouco alterada e textura ardosiana com presença de níveis lenticulares de meta-arenitos subarcóseos finos impuros (Fig. 29). A granulometria é fina com clastos subangulares a subarredondados e, às vezes, estirados pela foliação ardosiana S2. Presença de quartzo, mica branca (sericita) e clorita submilimétricos, bem como de minerais opacos anédricos estirados ou arredondados e, clorita e sericita secundárias (Fig. 29).

Figura 29 - Imagens de lâminas delgadas de ardósias da Formação Morro do Calcário.

Legenda: (A) Com polarizadores cruzados. Ardósia com matriz carbonática (1) envolvendo clastos de quartzo e mica (Lâmina MOC – 044B); (B) Com polarizadores paralelos. Ardósia com acamamento sedimentar marcado por níveis de variação granulométrica distintos (Lâmina MOC – 044B). Fonte: A AUTORA, 2015.

Ocorrem, também, fraturas de dissolução, decorrentes da presença de material carbonático, bem como falhas nos veios de quartzo e no acamamento sedimentar (Fig. 30).

Figura 30 – Imagem de lâminas delgadas com polarizadores cruzados de ardósias da Formação Morro do Calcário.

Legenda: Fotomicrografia com veios de quartzo preenchendo falhas (Lâmina MOC – 023A). (A) Veio duplicado; (B) Veio fibroso. Fonte: adaptado de CARVALHO, 2014.

3.2.2.4 Formação Serra da Lapa

As rochas pertencentes a Formação Serra da Lapa estão localizada nas porções centrosul e sudeste da área mapeada (APÊNDICE B).

Os afloramentos são, normalmente, observados ao longo de cortes de estrada, em ravinas, em encostas e em drenagens.

As rochas ocorrem bastante alteradas com crosta de alteração intempérica avermelhada.

É uma unidade com rochas de granulometria fina (fração silte), com cor variando de acordo com seu grau de alteração, sendo que sua cor mais característica é a amareloesbranquiçada oriunda de sua composição carbonática, bem como rosa claro/salmão e, branca com níveis arroxeados, amarelados e rosado-avermelhados (Fig. 31).

Figura 31 - Imagens de afloramentos da Formação Serra da Lapa.

Legenda: (A) Afloramentos característico de metaritmito da Formação Serra da Lapa com dobra D2 (Ponto MOC – 614); (B) Afloramento característico de metaritmito da Formação Serra as Lapa com *kink band*. Os metaritmitos apresentam intercalações de metamargas e meta-arenitos subarcóseos com metasiltitos (Ponto MOC – 614). Fonte: A AUTORA, 2015.

Intercalação de estratos margosos e níveis de espessura milimétrica ou centimétrica de meta-arenitos subarcóseos finos a médios e alguns níveis milimétricos de material argiloso, bastante laminado e com foliação penetrativa são observados nas rochas dessa formação (Fig. 31). Lentes de dolarenitos ocorrem localmente (Fig. 32).

Figura 32 – Imagem de lâmina delgada dos metadolarenitos da Formação Serra da Lapa.

Legenda: Com polarizadores cruzados. Dolarenito com clastos de quartzo (Qzt) e mica (Mc) (Lâmina MOC – 558B). Fonte: A AUTORA, 2015.

Segundo Carvalho (2013) essa unidade foi subdividida em três litofacies (Fig. 33):

- Metamarga de granulometria fina (fração silte), com cor mais característica amareloesbranquiçada oriunda de sua composição carbonática, com intercalação de estratos margosos e com níveis de espessura milimétrica ou centimétrica de meta-arenito subarcóseos fino a médio e, alguns níveis milimétricos de material argiloso.
- Sericita filito de granulometria fina (metasiltito), de coloração rosa claro/salmão, bastante laminado e com clivagem penetrativa.
- Meta-argilito carbonoso de granulometria fina (fração argila/silte), cor variando de avermelhada com intercalação de níveis de espessura centimétrica de metapelitos com cores branca (material carbonoso), roxa, amarelada (marga) e rosado-avermelhadas, com lentes de meta-arenito subarcóseos fino a médio, talvez metasiltito.

Figura 33 – Mapa Geológico do Barrocão.

Os metapelitos apresentam granulometria de muito fina a fina e textura variando de granolepidoblásticas a granonematoblásticas com algumas zonas protomiloníticas delimitadas pela orientação de cristais de quartzo, mica branca e carbonato, dependendo do grau de deformação imposto (Fig. 34).

As rochas da Formação Serra da Lapa são constituídas por clastos de quartzo, mica branca, plagioclásio, opacos, turmalina e zircão, que são, no geral, subarredondados ou subangulares com esfericidade mediana com baixo selecionamento e os opacos são aciculares (Fig. 34).

Figura 34 - Imagens de lâminas delgadas da Formação Serra da Lapa.

 Legenda: (A) Com polarizadores cruzados. Dolarenito com S1 // So (Lâmina MOC – 558B); (B) Com polarizadores paralelos. Metasiltito intercalado com esteiras algais (1). S2 oblíquo a S1 // So (Lâmina MOC – 558B).
Fonte: A AUTORA, 2015.

No diagrama abaixo (Fig. 35) se tem um resumo das características petrográficas das litofácies acima citadas e presentes na área de estudos.

-	Grupo Canastra			Grupo Vazante								
Formacão		Paracatu		Serra da Lapa			Morro do Calcário		Serra do Poço Verde		Serra do Garrote	
าระการ์ด	Filitos carbonosos c quartzito	Filitos carbonosos com intercalações de quartzitos brancos e estratificadas com material carbonoso e cores de alteração verde branco c		Metaritmitos carbonáticos com intercalações de metadolomitos; níveis de sericita filitos e filitos carbonosos			Metadolomitos cinza azulados com	Ardósias cinza com níveis de meta-arenitos finos	Metadolomitos bege a rosados	Ardósias esverdeadas	Filitos carbonosos pretos laminados e estratificados	
	Filitos carbonosos	Quartzitos brancos	grafite	Meta-argilitos Carbonosos	Sericita Filitos	Metamarga	estromatoritos	mos			Metasiltito laminado	Meta-argilito laminado e estratificado
Características	Granulometria fina; Coloração cinza azulado; Laminação plano-paralela	Granulometria grossa; Coloração branca; Cristais recristalizados; <i>Boxworks</i> de carbonato	Granulometria fina; Textura filossilicática	Granulometria fina; Matriz carbonática	Granulometria fina; Matriz carbonática	Granulometria fina; Matriz carbonática	Granulometria grossa; Coloração cinza; Estromatólitos colunares e esteiras algais, Bird eyes, brechas intraformacionais; Bastante recristalizado e com presença de jaspe; Matriz carbonática; Oólitos, pelóides e fragmentos líticos	Granulometria fina; Coloração cinza esverdeada; Níveis de meta-arenito fino; Matriz carbonática, quartzo e mica branca; Textura lepidoblástica	Granulometria grossa; Coloração bege a rosado; Níveis de barita e gretas de contração, esteiras algais e brechas intraformacion ais	Granulometria fina; Coloração esverdeada	Granulometria fina/média; Laminação plano- paralela; Textura lepidoblástica	Granulometria fina; Presença de lentes de quartzarenito fino, siltito e carbonato; Laminação plano- paralela; Textura filossilicática; Presença de laminações sedimentares demarcadas por variações granulométricas
Mineralooia	Quartzo; Feldspato; Mica branca; Opacos; Zircão; Turmalina; Óxido de ferro; Clorita; Sericita	Quartzo; Mica Branca; Opacos; Óxido de ferro	Quartzo; Feldspato; Mica branca; Óxido de ferro	Quartzo; Mica Branca; Carbonato	Quartzo; Mica Branca; Carbonato	Quartzo; Mica Branca; Carbonato	Carbonato; Oólitos; Pelóides; Fragmentos líticos	Quartzo; Mica Branca; Carbonato	Quartzo; Feldspato; Mica Branca; Carbonato	Quartzo; Mica Branca; Carbonato	Quartzo; Feldspato; Mica Branca	Quartzo; Feldspato; Mica branca; Opacos; Óxido de ferro; Clorita; Sericita

Figur<u>a 35 – Diagrama das características das unidades dos grupos Canastra e Vazante.</u>

Legenda: Quadro comparativo das principais características petrográficas e mineralógicas entre as unidades dos grupos Canastra e Vazante presentes na área de estudos. Fonte: A AUTORA, 2015.

3.2.3 O acamamento sedimentar

O acamamento sedimentar é uma estrutura primária preservada em vários litotipos da área de estudos devido ao baixo metamorfismo e deformação.

Nas unidades da Formação Paracatu, Grupo Canastra, o acamamento sedimentar ocorre como laminações e estratificações plano-paralelas marcadas por variações de granulometria dentro das unidade ardósia laminada e, como intercalações de metapelitos com metaquartzolitarenitos feldspáticos e quartzitos brancos.

Na Formação Serra da Lapa, Grupo Vazante, o acamamento é observado a partir da presença de lentes de metaquartzarenitos finos com micas e de metamargas subordinadas nos metaritmitos que alternam metamargas, sericita filitos e filitos carbonosos.

Os metadolomitos das formações Morro do Calcário e Serra do Poço Verde, Grupo Vazante, apresentam intercalações de metapelitos e metamargas cinza e esverdeadas, níveis de dolarenitos, lentes de metaquartzarenitos finos com micas, estruturas de bird's eyes, brechas intraclásticas, esteiras algais e estromatólitos e, gretas de contração.

A Formação Serra do Garrote, Grupo Vazante, é uma alternância de camadas de metasiltitos com filitos carbonosos.

3.3 Comparação petrográfica entre grupos Canastra e Vazante

À exceção dos metadolomitos que se encontram bastante preservados, os critérios para diferenciação petrológica dos metapelitos se baseiam em características como cor, granulometria, presença de lentes carbonáticas ou de meta-arenitos e quartzitos e, estruturas sedimentares preservadas (Fig. 36).

Comparando as unidades metassedimentares dos grupos Canastra e Vazante, pode-se determinar algumas características importantes para diferenciá-las.

O Grupo Vazante é constituído, na área de estudos, por quatro formações, que são, da base para o topo, Serra do Garrote, Serra do Poço Verde, Morro do Calcário e Serra da Lapa, enquanto que o Grupo Canastra é formado pela Formação Paracatu (Fig. 36).

Uma importante feição sedimentar que diferencia as unidades metapelíticas da Formação Paracatu das formações metapelíticas Serra da Lapa e Serra do Garrote é a presença de intercalações de meta-arenitos e quartzitos contínuas e importantes que podem alcançar até 2 m de espessura. Também, os metapelitos da Formação Serra da Lapa apresentam matriz carbonática, inexistente nas rochas do Grupo Canastra observadas na área de estudos (Fig. 36).

Em termos petrográficos a diferença é deformacional, uma vez que, os metapelitos do Grupo Canastra são mais deformados e recristalizados que os metapelitos do Grupo Vazante, chegando a apresentar textura protomilonítica (Fig. 36).

Figura 36 – Diagrama comparativo entre as unidades dos grupos Canastra e Vazante.

Petrografia						
Grupo Canastra	Grupo Vazante					
siliciclástico	carbonático					
lentes de quartzitos branco contínuas com até 2 m de espessura	lentes de meta-arenitos restritas a estratificação, com não mais que poucos centímetros de espessura					
bastante deformado quase não se observam estruturas sedimentares preservadas em lâmina	estruturas sedimentares preservadas em lâmina					

Legenda: Quadro comparativo dass principais diferenças observadas entre as unidades dos grupos Canastra e Vazante.

Fonte: A AUTORA, 2015.

3.4 Discussão

Entre os municípios de Vazante e Lagamar (MG) o Grupo Canastra vem sendo caracterizado por uma gradação de duas unidades quartzíticas, a inferior e a intermediária, para uma unidade psamo-pelítica superior (CAMPOS NETO, 1984). A unidade quartzítica inferior compreende variações de quartzitos finos a médios e maciços com intercalações de filitos. A unidade intermediária é formada por quartzitos micáceos com filitos quartzosos intercalados. Já a unidade psamo-pelítica compreende uma intercalação de filitos carbonosos e quartzitos brancos com aumento da granulometria para o topo, que correspondem a Formação Paracatu (FREITAS SILVA e DARDENNE, 1994; DARDENNE, 2000; VALERIANO et al., 2004).

Já o Grupo Vazante é constituído, da base para o topo, por: ardósias e filitos cinza escuros com intercalações delgadas de quartzito (Formação Serra do Garrote); metadolomitos estromatolíticos cinza a rosados maciços ou com laminações microbiais e esteiras algais, níveis dolareníticos oncoolíticos, brechas intraformacionais e *bird's eyes*, que estão intercalados com metapelitos e metamargas esverdeadas com gretas de contração (Formação Serra do Poço Verde); dolomitos estromatolíticos com bioestromas e bioermas associados à dolarenitos e dolorruditos oolíticos e oncolíticos (Formação Morro do Calcário); filitos carbonosos e metasiltitos carbonáticos com lentes de dolomito e camadas de quartzito (Formação Serra da Lapa) (MADALOSSO e VALLE, 1978, MADALOSSO, 1980 e, DARDENNE, 1978 apud PIMENTEL et al., 2001; DARDENNE, 2000; VALERIANO et al., 2004).

Litoestratigraficamente, tanto o Grupo Canastra quanto o Grupo Vazante foram depositados em contexto geotectônico de bacia de margem passiva meso-neoproterozóica, com fontes sedimentares continentais Arqueanas e Paleoproterozóicas localizadas a oeste e leste, sendo que o primeiro é considerado como um megaciclo regressivo que grada de fácies plataformais dominadas por correntes de tempestades com sedimentos típicos de plataforma rasa a fácies dominadas por correntes de maré, enquanto que o segundo é um depósito de plataforma rasa (DARDENNE, 2000; VALERIANO et al., 2004).

4 GEOMETRIA E EVOLUÇÃO DEFORMACIONAL DOS GRUPOS CANASTRA E VAZANTE NA ÁREA DE ESTUDOS

4.1 Materiais e métodos

Os dados estruturais obtidos durante as campanhas de campo foram tratados e interpretados a partir da utilização do programa *Openstereo* (GROHMANN et al., 2010), todos em estereograma equiária no hemisfério inferior, com estereogramas de contorno de isolinhas que compreendem valores de área a 1%.

4.2 Introdução

O estilo estrutural dominante na Faixa Brasília Meridional é caracterizado por falhas de empurrão com vergência para leste que separam, na área de estudos, as unidades metassedimentares do Grupo Vazante daquelas dos grupos Canastra e Bambuí (Fig. 10).

Diversas estruturas complexas regionais de tectônica dúctil-rúptil em baixo metamorfismo são observadas, tais como dobras apertadas a isoclinais recumbentes ou reclinadas e duas gerações de dobras suaves com *kink bands* associadas, bem como falhas normais e inversas com movimentação sinistral.

4.3 As fases de deformação e suas estruturas

Na área de estudos, são observadas quatro fases de deformação de caráter compressivo e fraturas e falhas de difícil hierarquização.

As estruturas citadas, foram discriminadas com base em critérios de superposição, estilo geométrico e orientação (Fig. 37).

Fase de Deformação	Estrutura Gerada	Característica da Estrutura				
D1	S1 // So	Clivagem ardosiana plano axial de dobras suaves a abertas				
D2	S2 // S1 // So S2 oblíquo a So // S1 L2	Dobras apertadas com clivagem de crenulação com lineações de estiramento e de interseção				
D3	\$3 L3	Clivagem de crenulação NW-SE com kink bands associadas; Lineação de crenulação para NW				
D4	S4 L4	Clivagem de crenulação NE-SW; Lineação de crenulação para NE e SW				

Figura 37 – Fases de deformação e suas estruturas.

Legenda: Quadro das principais estruturas observadas em campo. Fonte: modificado de CARVALHO, 2013

4.3.1 Primeira fase de deformação (D1)

À primeira fase de deformação (D1) está relacionada uma foliação penetrativa do tipo clivagem ardosiana (S1) plano axial de dobras suaves a abertas que está sempre paralela ou subparalela ao acamamento sedimentar (S1 // So). No geral, essa clivagem é observada como uma película de aspecto sedoso sempre que o acamamento sedimentar ocorre.

Essa estrutura mergulha, suavemente, para WNW com atitude máxima de 290/22 e grande dispersão devido a deformações posteriores (Fig. 38).

Legenda: Estereograma de polos de So // S1 (n = 222), cuja guirlanda corresponde ao eixo de dobramento D4: 225/22.

Fonte: A AUTORA, 2015.

4.3.2 <u>A segunda fase de deformação (D2)</u>

A segunda fase de deformação (D2), é caracterizada por uma clivagem de crenulação espaçada (S2) plano axial de dobras variando de apertadas a isoclinais reclinadas e recumbentes (Fig. 39).

Figura 39 – Imagem de estruturas D2

Legenda: Afloramento de quartzo-sericita filito carbonoso com intercalações de quartzito da Formação Paracatu com dobra D2 (Ponto MOC – 007). Fonte: A AUTORA, 2015.

A clivagem S2 apresenta direção NE-SW e mergulhos médios a altos principalmente para NW, podendo ocorrer paralela ou oblíqua ao acamamento sedimentar e a clivagem ardosiana S1 com mergulho baixo a médio para NW (Fig. 40 e 41).

Houve, também, o desenvolvimento de uma lineação de interseção com grande dispersão de orientação, mas com caimento preferencial para NW (Fig. 40 e 41).

Legenda: Estereograma de polos de S2 (n = 514) e L2 (n = 111), losangos vermelhos, cuja guirlanda representa dobramento D3 com eixo 340/38. Fonte: A AUTORA, 2015.

Legenda: Imagem *Landsat*-8 sobreposta pelo mapa de atitudes de clivagem S2 e de lineação de interseção L2.

Fonte: modificado de GOOGLE EARTH, 2013.

4.3.3 A terceira fase de deformação (D3)

A terceira fase de deformação (D3) foi responsável pela formação de uma clivagem de crenulação espaçada (S3) relacionada a dobras abertas e *kink bands* (Fig. 42) com eixo de orientação preferencial para NW e planos axiais de médio a alto mergulhos com direções predominantemente NW-SE, bem como dispersões para NE e E-W, com desenvolvimento de lineação de crenulação nos metapelitos (Fig. 42 e 43).

Legenda: (A e B) *Kink band* de terceira fase de deformação no acamamento sedimentar paralelo a clivagem S2 (Pontos MOC – 079 e MOC – 575). Fonte: A AUTORA, 2015.

Figura 43 – Estruturas D3.

Legenda: (A) Bloco diagrama D3; (B) Estereograma de S3 (n = 63) e L3 (n = 84), círculos vermelhos. Fonte: A AUTORA, 2015.

A Sinforma do Barrocão:

Como descrito por Carvalho (2013), a Sinforma do Barrocão é uma megadobra D3 localizada na parte noroeste da área (Fig. 44).

Legenda: Imagem *Landsat-8* sobreposta pela geologia da área de estudos, onde o círculo vermelho localiza a Sinforma do Barrocão. Fonte: modificado de GOOGLE EARTH, 2013.

A Sinforma do Barrocão é uma dobra com plano axial subvertical com seu flanco E mergulhando para NW e seu flanco W para N (Fig. 45 A e B), cuja lineação apresenta caimento médio para NW que é coincidente com os eixos de lineação de crenulação D3 (Fig. 45 C).

Figura 45 – Estereogramas dos flancos da Sinforma do Barroção.

Legenda: (A) Estereograma de polos de So do Flanco E do Sinforma do Barroção (n = 35) e densidade máxima de 11,6%. O ● representa o polo máximo (120/39) e, — representa o plano máximo (300/50); (B) Estereograma de polos de So do Flanco W do Sinforma do Barroção (n = 49) e densidade máxima de 9,9%. O ● representa o polo máximo (180/39) e, representa o plano máximo (360/50); (C) Estereograma de polos de So dos Flancos E e W do Sinforma do Barroção (n = 84). O Eixo da dobra é L4 (330/46). Fonte: A AUTORA, 2015.

4.3.4 A quarta fase de deformação (D4)

A quarta fase de deformação (D4) foi responsável pela formação de uma clivagem de crenulação espaçada (S4), relacionada a dobras abertas com orientação NE-SW (Fig. 46).

Figura 46 – Imagem de estruturas D4.

Legenda: Dobras em Chevron D5 em So // S1 // S2 (Ponto MOC - 628). Fonte: A AUTORA, 2015.

A clivagem de crenulação S4 apresenta direções de planos NE-SW, com uma lineação de crenulação L4 de caimento para NE e SW com ângulos variando de baixos a médios (Fig. 47 e 48).

Legenda: (A) Bloco diagrama D4; (B) Estereograma de S4 (n = 32) e L4 (n = 67), círculos vermelhos. Fonte: A AUTORA, 2015.