4 GEOCRONOLOGIA U-Pb

Os dados até hoje reportados na bibliografia, para as rochas de nosso interesse, foram sempre no Bloco Oeste (Batólito de Santa Fé). Vinasco et al., (2006) apresentam idades ⁴⁰Ar/³⁹Ar com *plateaus* não muito definidos e calcula idades de 92 Ma e 89 Ma interpretadas como idades de resfriamento. Zapata et al., (2013) reporta uma idade U-Pb em zircões de 89 Ma no gabro de Altamira, gabro associado ao Batólito de Santa Fé e interpretadas como idade de cristalização. Weber et al., (2015) apresentam idades U-Pb em zircõe de 100 Ma para o *Stock* de Buriticá, também interpretada como idade de cristalização.

Nossa pesquisa está focada nas idades de cristalização dos plútons. Foi possível separar zircões de dez amostras (Figura 21), sendo quatro do Bloco Leste ou Batólito La Honda-Sabanalarga, quatro do Bloco Oeste ou Batólito de Santa Fé, um do *Stock* de Buriticá e um do *Stock* de Altavista, corpo satélite do Batólito Antioqueño. Todos os nossos analises foram feitos em zircões ígneos é não foi possível a datação de núcleos herdados. As rações Th/U dos analises (Figura 22) foram sempre superiores a 0.26, razões indicativas de zircões ígneos. Os datos de cada um dos analises realizados são apresentados na Quadro 5.

Um dos maiores problemas no andamento da pesquisa tem sido a ausência de zircões nas amostras coletadas do Batólito de Santa Fé, ausência observada nas lâminas e confirmada após a falta de sucesso no processo de separação de zircões. Na bibliografia foi encontrado que as análises geoquímicas até agora realizadas nas unidades objeto de nossa pesquisa, todos no Bloco Oeste ou Batólito de Santa Fé, apresentam teores de zircônio abaixo de 120 ppm (média de 40 ppm). A partir de dados teóricos, rochas com teores abaixo de 150 ppm não cristalizam zircões. Realizando uma segunda amostragem focada na coleta das amostras mais diferenciadas possíveis em cada uma das unidades, foi possível achar zircões nelas.

A abundância relativa dos zircões é uma característica que ajuda a diferenciar o Batólito de Santa Fe do Batólito de La Honda-Sabanalarga. O Batólito de Santa Fe apresenta poucos zircões e até o momento nenhuma pesquisa que procurou zircões nesta unidade, tinha os achado, os nossos são os primeiros dados U-Pb em zircões desta unidade. Em contraste, as rochas do Batólito La Honda-Sabanalarga apresentam uma grande quantidade de grãos de zircão em todas as amostras.

Figura 21 – Localização das amostras para geocronologia

Fonte: O autor, 2017.

Figura 22 - Rações Th/U dos analises conduzidas

Fonte: O autor, 2017.

Quadro 5 - Analises geocronológicas realizadas (continua)

	Spot	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	1 s (%)	206Pb/238U	1 s (%)	Rhod	²⁰⁷ Pb/ ²⁰⁶ Pbe	1 s (%)	²⁰⁶ Pb/ ²³⁸ U	1 s abs	²⁰⁷ Pb/ ²³⁵ U	1 s abs	²⁰⁷ Pb/ ²⁰⁶ Pb	1 s abs	% Concordance
	1	0.0817	2.0955	82.9458	140.3483	0.59	0.1146	15.08	0.0128	8.54	0.57	0.0648	12.43	82.1479	7.01	110.1756	16.61	768.3630	95.51	10.69
	2	0.0363	2.9569	126.4644	207.0614	0.61	0.1036	16.24	0.0120	8.91	0.55	0.0624	13.57	77.1661	6.88	100.0635	16.25	686.9856	93.24	11.23
	3	0.0725	1.7357	61.1000	120.3879	0.51	0.1036	11.49	0.0126	8.93	0.78	0.0598	7.24	80.5429	7.19	100.0914	11.50	594,9505	43.06	13.54
	4	0.1149	0.8695	23,2140	58,1616	0.40	0.1425	16.02	0.0124	9.65	0.60	0.0834	12.79	79.3298	7.65	135,2361	21.67	1279,6908	163.66	6.20
	5	0.0837	1 2044	30 7911	85 8436	0.36	0 1002	16.95	0.0120	9.93	0.59	0.0607	13 74	76 6852	7.61	96 9902	16 44	630 2871	86.60	12 17
WSF	ă	0.1876	1 1170	24 2060	68 5210	0.00	0.1002	30.26	0.0125	10.57	0.35	0.0756	28.35	86 6673	0.16	133 0485	10.44	1083 5092	307 20	8.00
	Ĭž	0.1070	0.9760	10 5005	50.0111	0.00	0.1410	00.20	0.0105	10.07	0.00	0.0700	20.00	00.0070	0.10	117 0202	40.00	069 7405	242.01	0.00
	1 4	0.3439	0.6769	16.5005	59.0111	0.31	0.1232	27.10	0.0125	10.24	0.30	0.0714	25.16	80.1564	0.21	117.9363	32.06	966.7405	243.91	0.27
	8	0.3992	0.5489	11.8726	35.5614	0.33	0.1319	28.00	0.0130	9.81	0.35	0.0736	26.22	83.2557	8.17	125.7842	35.22	1030.0157	270.12	8.08
	9	0.3254	0.8532	22.2507	56.0590	0.40	0.0869	29.22	0.0114	11.50	0.39	0.0554	26.86	72.9167	8.38	84.5816	24.71	427.7918	114.90	17.04
	10	0.0939	1.2707	32.9440	94.8334	0.35	0.0998	32.28	0.0128	9.67	0.30	0.0565	30.80	81.9881	7.92	96.5572	31.17	473.1950	145.76	17.33
	11	0.2180	0.6801	21.1663	48.8519	0.43	0.1051	29.55	0.0138	9.60	0.32	0.0554	27.94	88.1383	8.46	101.5059	29.99	427.9923	119.59	20.59
	1	0.0112	5.3717	302.0351	356.5301	0.85	0.0873	12.52	0.0128	11.15	0.89	0.0493	5.68	82.2976	9.18	84.9739	10.63	160.8458	9.14	51.17
	2	0.0352	4.4871	241.0776	321.2838	0.75	0.0801	15.95	0.0123	11.65	0.73	0.0471	10.89	79.0308	9.21	78.2133	12.47	53.3074	5.80	148.25
	3	0.0170	3 5281	165 1837	256 2465	0.64	0.0768	14 22	0.0122	11.63	0.82	0.0458	8 18	77 9538	9.07	75 1567	10.69	-12 9268	-1.06	-603.04
	Ă	0.0271	4 8425	234 6343	339 5296	0.69	0.0865	14 91	0.0126	11 20	0.75	0.0498	9.85	80.6552	9.03	84 2671	12.57	187 8627	18 50	42.93
	7	0.0271	5.0155	204.0040	247 7290	0.03	0.0000	12.20	0.0120	11.20	0.75	0.0461	6.02	70 0052	0.00	75 7026	10.12	1 7041	0.12	4252.00
		0.0204	0.0100	324.0300	347.7209	0.93	0.0774	13.30	0.0122	11.44	0.00	0.0401	0.93	70.0000	0.94	15.1230	10.13	1.7 941	0.12	4332.27
	<u> </u>	0.0344	3.4123	150.6101	249.4230	0.60	0.0676	14.04	0.0126	11.14	0.75	0.0505	9.60	00.7301	9.00	65.4373	12.00	210.0275	21.44	36.90
	1.6	0.0334	3.3353	168.4220	238.3626	0.71	0.0813	16.77	0.0127	11.07	0.66	0.0465	12.59	81.2892	9.00	79.3471	13.30	21.2495	2.68	382.55
	8	0.0209	3.5074	161.0492	262.8363	0.61	0.0734	15.98	0.0122	11.45	0.72	0.0436	11.15	78.1395	8.95	71.9117	11.49	-130.5875	-14.56	-59.84
WERSC	9	0.0112	7.0754	384.8587	515.6561	0.75	0.0805	12.49	0.0122	11.42	0.91	0.0479	5.06	78.0710	8.91	78.6046	9.81	94.8577	4.80	82.30
1100000	10	0.0436	3.1848	143.4991	228.5589	0.63	0.0807	18.72	0.0120	16.64	0.89	0.0486	8.57	77.1478	12.84	78.8074	14.75	129.4219	11.09	59.61
	11	0.0566	3.4282	164.4976	248.9468	0.66	0.0793	18.67	0.0126	15.88	0.85	0.0456	9.82	80.8085	12.83	77.5032	14.47	-23.2647	-2.28	-347.34
	12	0.0291	3.7654	164,1494	278.6868	0.59	0.0778	19.52	0.0121	16.60	0.85	0.0468	10.26	77.2703	12.83	76,1098	14.86	39.8141	4.09	194.08
	13	0.0262	3 9194	162 9850	297 5486	0.55	0.0790	19.31	0.0121	16.45	0.85	0.0471	10 10	77 8474	12.81	77 1854	14 90	56 7343	5.73	137 21
	14	0.0314	4 1717	199 6052	309 9082	0.64	0.0796	18 21	0.0122	16.37	0.00	0.0472	7 98	78 3526	12.83	77 7664	14.16	59 7914	4 77	131.04
	15	0.0262	2 5701	164.0064	252 5240	0.65	0.0701	20.54	0.0124	16 11	0.50	0.0462	12.72	70.2060	12.00	77 2225	15.00	14 0027	1 70	566.90
	10	0.0303	3.3701	144.0004	203.0249	0.05	0.0791	10.44	0.0124	10.11	0.70	0.0403	0.01	79.3000	12.79	75.6629	10.00	14.0037	1.70	000.09
		0.0351	3.3341	144.4296	251.5675	0.57	0.0774	10.44	0.0121	10.51	0.90	0.0465	0.21	11.3310	12.77	75.0020	13.95	23.2490	1.91	332.02
	17	0.0159	4.1909	181.0886	307.6710	0.59	0.0783	18.02	0.0125	15.94	0.88	0.0454	8.39	80.1846	12.79	76.5358	13.79	-35.9754	-3.02	-222.89
	18	0.0368	3.5652	149.7737	261.6646	0.57	0.0823	20.81	0.0124	16.04	0.77	0.0481	13.26	79.6032	12.77	80.3275	16.72	101.9238	13.52	78.10
	1	0.2161	0.9985	31.3055	63.3530	0.49	0.1035	70.41	0.0150	66.88	0.95	0.0500	22.02	96.0744	64.26	100.0084	70.42	194.8246	42.90	49.31
	2	0.1203	0.7500	16.5927	49.8917	0.33	0.1257	72.43	0.0161	62.41	0.86	0.0567	36.76	102.8916	64.22	120.2152	87.08	478.2323	175.80	21.51
	3	0.4382	0.6851	16.7303	43.3765	0.39	0.1373	69.90	0.0159	63.50	0.91	0.0626	29.22	101.7667	64.62	130.6722	91.34	694.6814	203.02	14.65
	4	0.3347	1.0932	34.9825	63.7891	0.55	0.1443	69.48	0.0166	60.61	0.87	0.0631	33.97	106.1026	64.30	136.8989	95.11	710.9094	241.50	14.92
	5	0.3288	1.6763	28.6785	84.3772	0.34	0.1440	63.26	0.0178	56.68	0.90	0.0587	28.10	113.6734	64.42	136.6392	86.43	556.8888	156.47	20.41
	6	0.3232	0.7011	17.8080	48.3075	0.37	0.1150	82.33	0.0140	71.76	0.87	0.0595	40.36	89.8083	64.45	110.5399	91.01	583.9312	235.68	15.38
	7	0.3490	0.7929	20,4562	51,4319	0.40	0.0845	80.83	0.0146	68.86	0.85	0.0419	42.33	93,5461	64.42	82,3269	66.55	-232,2013	-98.29	-40.29
	Å	0.4533	0.4907	14 5102	31 9293	0.45	0 1032	83.78	0.0132	76 71	0.92	0.0568	33.67	84 3818	64.73	99 7277	83.55	484 0926	163.01	17.43
	l ă	0.5185	0.4507	13 3816	43 0975	0.40	0.0002	01.53	0.0135	78 / 1	0.86	0.0536	47 21	86.6360	67.03	96 71/8	88.52	352 0105	166.60	24.55
W64SA	10	0.5105	0.7034	17 5177	20.0004	0.31	0.0355	07.04	0.0135	02 12	0.00	0.0530	51 77	80.0054	67.33	02 7017	00.32	405 5074	200.04	10.07
		0.0315	0.0029	17.5177	39.0094	0.45	0.0950	97.94	0.0120	05.15	0.00	0.0548	00.07	70.0400	07.55	92.7017	30.79	403.3074	209.94	19.97
	11	0.8126	0.6859	21.5049	41.3965	0.52	0.0856	93.71	0.0123	85.50	0.91	0.0504	38.37	78.9490	67.50	83.4410	78.19	213.9856	82.10	36.89
	12	0.1999	2.4236	90.5407	152.4666	0.59	0.0914	90.02	0.0119	88.14	0.98	0.0557	18.31	76.2226	67.18	88.8047	79.94	441.6783	80.89	17.26
	13	0.3875	2.1160	101.4898	129.6992	0.78	0.0856	88.71	0.0127	82.59	0.93	0.0487	32.35	81.5625	67.37	83.3644	73.95	135.2981	43.78	60.28
	14	0.8653	0.5640	14.6163	36.1485	0.40	0.0712	105.35	0.0120	88.80	0.84	0.0432	56.68	76.6431	68.06	69.8580	73.60	-156.7176	-88.82	-48.91
	15	0.1818	2.8615	105.0704	178.6301	0.59	0.0850	88.76	0.0122	86.58	0.98	0.0507	19.52	77.9417	67.48	82.8317	73.52	226.2145	44.17	34.45
	16	0.7113	0.6869	24.2640	44.1958	0.55	0.0831	107.14	0.0121	90.34	0.84	0.0500	57.59	77.2351	69.77	81.0351	86.82	194.5472	112.05	39.70
	17	0.1126	2.4293	30.8514	160.2592	0.19	0.0775	84.27	0.0130	80.90	0.96	0.0433	23.60	83.0822	67.21	75.7768	63.86	-149.0102	-35.16	-55.76
	18	0.0442	2.0272	38.8049	157.2238	0.25	0.0652	61.01	0.0145	48.53	0.80	0.0325	36.97	93.0196	45.14	64.1082	39.11	-917.6134	-339.20	-10.14
	1	0.0392	1.2713	51.9918	91.7697	0.57	0.0897	20.82	0.0122	10.46	0.50	0.0534	18.00	78.0942	8.17	87.2635	18.17	345.9448	62.27	22.57
	2	0.0300	2.2938	71.8620	153.3750	0.47	0.1011	16.55	0.0131	9.83	0.59	0.0560	13.32	83.8680	8.24	97.7989	16.19	452.3257	60.23	18.54
	3	0.0170	1,9798	105.0083	141.5048	0.74	0.0800	18.66	0.0117	10.81	0.58	0.0494	15.21	75,2958	8.14	78,1826	14.59	167.3306	25.45	45.00
	Ā	0.0238	1 1524	59 3852	84 7654	0.70	0.0883	19.59	0.0117	10.98	0.56	0.0548	16.23	74 8727	8.22	85 9591	16.84	405 9435	65.87	18 44
	5	0.0235	1 2315	65.0602	03 3012	0.70	0.0000	25.32	0.011/	11.66	0.00	0.00465	22 /8	73 107/	8.54	71 6894	18 15	21 6711	4 87	337.76
		0.0233	0.7250	29 6217	59.0710	0.70	0.0702	42.02	0.0114	11.00	0.40	0.0405	40.92	74.0920	0.04	60.5166	20.45	21.0711	24.60	07.21
	l 🖞	0.0040	0.7250	20.0217	30.9719	0.49	0.0709	42.37	0.0110	10.50	0.27	0.0445	40.02	74.0039	0.41	09.0100	29.40	-04.9403	-34.00	-07.21
	1 4	0.0285	0.9387	31.6814	75.7091	0.42	0.0516	27.98	0.0122	10.51	0.38	0.0307	25.93	78.1134	8.21	51.0771	14.29	-1089.4106	-282.45	-7.17
	8	0.0724	0.6608	25.0091	52.4437	0.48	0.0577	34.70	0.0125	11.27	0.32	0.0336	32.82	79.7633	8.99	57.0015	19.78	-820.4142	-269.28	-9.72
	9	0.0239	1.9801	56.9370	142.3413	0.40	0.0780	16.63	0.0135	10.46	0.63	0.0421	12.94	86.1508	9.01	76.3042	12.69	-222.2373	-28.75	-38.77
WTRCA	10	0.0512	0.7768	31.2088	53.6461	0.58	0.0672	51.65	0.0141	10.16	0.20	0.0346	50.64	90.3379	9.18	66.0768	34.13	-744.2786	-376.92	-12.14
	11	0.0450	1.0778	43.0467	90.0269	0.48	0.0529	35.54	0.0121	11.58	0.33	0.0317	33.60	77.4716	8.97	52.3152	18.59	-991.0995	-332.97	-7.82
1	12	0.0366	1.3974	46.3033	104.1539	0.44	0.0628	27.07	0.0130	10.85	0.40	0.0351	24.80	83.1808	9.03	61.8686	16.75	-701.8640	-174.08	-11.85
1	13	0.0166	1.5397	35.0167	113.0564	0.31	0.0607	25.15	0.0143	9.89	0.39	0.0307	23.13	91.6934	9.06	59.8567	15.06	-1084.4665	-250.84	-8.46
	14	0.0480	1.5026	30.7508	104.4951	0.29	0.0834	14.19	0.0143	9.63	0.68	0.0423	10.42	91.6040	8.82	81.3163	11.54	-211.3766	-22.03	-43.34
	15	0.0599	1.3208	34,8628	89,4712	0.39	0.0783	25.52	0.0144	9.73	0.38	0.0396	23.59	91.8622	8.94	76.5259	19.53	-379,7659	-89.58	-24.19
1	16	0.0217	2 6411	137 0116	165 5753	0.83	0.0894	21.00	0.0154	10.96	0.52	0.0421	17 91	98 3929	10.78	86 9176	18 25	-217 9407	-39.04	-45.15
	17	0.0481	4 1034	216 0860	250 6311	0.87	0.0062	10.74	0.0140	0.00	0.02	0.0421	4.62	80 7367	8 70	03 3629	10.20	187 0355	8 65	47.08
1	1.	0.0401	0.0514	210.0000	70 2015	0.07	0.0903	26.00	0.0140	10.20	0.90	0.0490	7.02	03.7307	0.70	62 2012	22.20	769 2656	272 42	11.30
1		0.0020	0.5514	32.3124	10.2913	0.40	0.0044	30.90	0.0130	10.20	0.20	0.0343	30.40	76 9600	0.91	72 44 97	23.39	700.2000	20.07	-11.30
	19	0.0774	1.3147	40.0041	100.0769	0.30	0.0739	30.33	0.0120	11.43	0.30	0.0447	1 20.09	10.0093	0.19	12.410/	1.30	-12.1143	-20.27	-100.51

Quadro 5 - Analises geocronológicas realizadas (continuação)

	Spot	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	1 s (%)	206Pb/238U	1 s (%)	Rhod	²⁰⁷ Pb/ ²⁰⁶ Pbe	1 s (%)	²⁰⁶ Pb/ ²³⁸ U	1 s abs	²⁰⁷ Pb/ ²³⁵ U	1 s abs	²⁰⁷ Pb/ ²⁰⁶ Pb	1 s abs	% Concordance
	1	0.0913	1.0106	30.9665	79.7038	0.39	0.0617	61.13	0.0122	17.03	0.28	0.0366	58.71	78.2269	13.32	60.7823	37.16	-582.4595	-341.99	-13.43
	2	0.0721	1.3858	72,1525	103,7977	0.70	0.0661	38.47	0.0122	17.09	0.44	0.0393	34.47	78.2066	13.36	64,9486	24.99	-400.0762	-137.89	-19.55
	3	0 1295	0 8944	37 5078	69 1220	0.54	0.0554	58 24	0.0122	18 18	0.31	0.0329	55 32	78 1096	14 20	54 7015	31.86	-881 3740	-487 62	-8.86
	Ă	0.0033	0.0047	43 8225	76 8781	0.57	0.0523	66 15	0.0110	17 01	0.01	0.0318	63.68	76 3965	13.60	51 7472	34.23	-982 6467	-625 73	-7.77
	12	0.0333	2 1602	111 5045	164 2105	0.57	0.0525	21 12	0.0110	17.31	0.27	0.0370	25.96	76 7040	12.00	60 2422	19 75	557.0952	144.00	12 70
		0.0419	2.1093	05 4400	104.2103	0.00	0.0011	51.15	0.0120	47.40	0.00	0.0370	23.00	70.7949	13.30	52,0000	10.75	-337.0032	- 144.00	-13.79
	<u></u>	0.0549	1.6821	95.4400	130.3062	0.73	0.0537	50.34	0.0120	17.48	0.35	0.0325	47.21	76.7187	13.41	53.0869	20.73	-918.1659	-433.48	-8.30
WSS	1	0.1338	1.1133	52.5036	93.0808	0.56	0.0493	54.19	0.0117	17.80	0.33	0.0305	51.19	75.2135	13.38	48.8788	26.49	-1110.7153	-568.53	-6.77
	8	0.1717	0.6220	23.5071	54.5940	0.43	0.0715	50.80	0.0124	16.97	0.33	0.0419	47.88	79.3711	13.47	70.1512	35.64	-233.9482	-112.02	-33.93
	9	0.1743	0.7911	24.5819	56.0254	0.44	0.1166	46.86	0.0124	17.20	0.37	0.0680	43.60	79.6404	13.70	112.0114	52.49	869.9660	379.27	9.15
	10	0.1851	0.5872	17.4015	40.9242	0.43	0.1035	48.87	0.0123	17.84	0.37	0.0613	45.50	78.4957	14.00	100.0166	48.88	649.1390	295.34	12.09
	11	0.1107	1.0585	50.2560	77.3121	0.65	0.0876	42.13	0.0121	16.36	0.39	0.0523	38.82	77.8157	12.73	85.3022	35.93	300.2554	116.56	25.92
	12	0.0485	1.3126	64.3064	93.7257	0.69	0.0780	41.11	0.0119	16.88	0.41	0.0475	37.49	76.3260	12.88	76.2499	31.35	73.8670	27.69	103.33
	13	0.1360	0.8188	30,1015	60.6343	0.50	0.1044	54.49	0.0119	17.26	0.32	0.0637	51.68	76,1711	13.15	100.8633	54.96	732,5195	378.57	10.40
	14	0 1806	0.4802	18 0328	36 7648	0.49	0 1021	79.47	0.0118	18.60	0.23	0.0628	77 27	75 6287	14.07	98 7169	78.45	699 8221	540 73	10.81
	15	0.0545	0.4002	141 0250	170 7216	0.70	0.0744	27.45	0.0110	16.00	0.20	0.0454	22.05	76 1069	12.46	72 9954	20.01	24.4405	7 50	221.24
	15	0.0345	2.4000	141.9250	04 0440	0.79	0.0744	27.45	0.0119	10.33	0.60	0.0454	22.05	70.1900	0.74	72.0004	20.01	-34.4405	-7.59	-221.24
		0.1202	1.2069	49.8307	84.8442	0.59	0.0893	20.72	0.0121	11.19	0.42	0.0533	24.20	77.8491	8.71	86.8230	23.20	341.1518	82.77	22.82
	2	0.1100	1.0753	33.4578	75.2012	0.44	0.1032	29.12	0.0124	11.11	0.38	0.0604	26.92	79.3952	8.82	99.7490	29.05	618.4020	166.47	12.84
	3	0.1785	0.8743	22.4302	61.5144	0.36	0.1061	34.51	0.0125	11.25	0.33	0.0617	32.62	79.8834	8.98	102.4301	35.34	665.0518	216.95	12.01
	4	0.0816	1.4802	78.0121	113.1642	0.69	0.0641	20.68	0.0128	11.36	0.55	0.0364	17.28	81.8832	9.31	63.1203	13.05	-601.6182	-103.95	-13.61
	5	0.3603	0.7918	36.6886	73.4711	0.50	0.0430	32.93	0.0121	11.15	0.34	0.0258	30.99	77.4164	8.64	42.7160	14.07	#¡NUM!	#¡NUM!	#¡NUM!
MC7TD	6	0.0888	0.6650	20.5972	51.6770	0.40	0.0662	21.66	0.0121	12.19	0.56	0.0396	17.90	77.6288	9.46	65.0963	14.10	-374.5679	-67.05	-20.72
W6/TR	7	0.1581	0.4037	14.7379	31.8693	0.46	0.0462	37.76	0.0122	12.80	0.34	0.0274	35.52	78.2798	10.02	45.8217	17.30	#iNUM!	#iNUM!	#iNUM!
	8	0.0918	0 4239	13 1625	35 2052	0.37	0.0509	48 23	0.0121	12 17	0.25	0.0304	46 67	77 8489	9 48	50 3836	24 30	-1121 5900	-523 48	-6.94
	ă	0.0496	1 1394	53 6710	78 8678	0.68	0.0966	17.00	0.0131	11 43	0.67	0.0533	12 58	84 1988	9.62	93 6170	15.91	340 7753	42.88	24 71
	10	0.1551	0.6501	25 2766	51 1062	0.00	0.0620	22.07	0.0125	12.07	0.52	0.0267	10.65	70 9279	0.64	62 0202	14.21	590.0926	11/ 10	12 74
	11	0.1331	1 0162	55 6152	90 4291	0.40	0.0030	24.95	0.0120	11 10	0.52	0.0307	22.22	76.0611	9.44	47 5571	11 02	-300.3030 #•NI IMI	-114.13 #•NILIN/I	- 13.74 #:NI IM
		0.0404	0.5101	26 1110	52 2762	0.09	0.0400	24.00	0.0119	10.00	0.45	0.0293	22.23	70.0011	0.44	47.5571	10.02	# NU IN		# [NOIVI:
	12	0.3023	0.5191	20.1119	32.2703	0.50	0.0347	31.00	0.0124	10.00	0.34	0.0203	29.70	79.4200	0.04	34.0232	10.97	# INUIVI!		# INUIVI:
	1	0.0981	2.1201	81.7021	162.5213	0.50	0.0705	27.91	0.0139	10.20	0.37	0.0368	25.90	88.9790	9.13	69.2187	19.32	-570.1590	-148.01	-15.61
	2	0.1974	1.0292	31.6330	95.6689	0.33	0.0723	19.73	0.0118	15.30	0.78	0.0443	12.46	75.7690	11.59	70.8597	13.98	-91.8526	-11.45	-82.49
	3	0.1284	1.5704	45.0627	121.4838	0.37	0.0795	28.79	0.0145	9.80	0.34	0.0398	27.07	92.8720	9.10	77.7206	22.37	-366.6009	-99.22	-25.33
	4	0.1105	1.2514	40.3345	102.3532	0.39	0.0663	24.81	0.0126	15.47	0.62	0.0381	19.40	80.8148	12.51	65.1859	16.17	-476.9495	-92.51	-16.94
	5	0.0624	2.2509	75.5051	167.4172	0.45	0.0838	13.95	0.0138	9.77	0.70	0.0440	9.97	88.3812	8.63	81.6835	11.40	-110.0475	-10.97	-80.31
	6	0.0899	1.4762	51.2681	121.2776	0.42	0.0814	28.47	0.0143	10.49	0.37	0.0413	26.47	91.4109	9.59	79.4397	22.62	-267.3349	-70.75	-34.19
	7	0.1207	1.4091	29.6995	109.6715	0.27	0.0852	22.12	0.0138	9.76	0.44	0.0448	19.85	88.4146	8.63	83.0634	18.37	-68.2151	-13.54	-129.61
	8	0.0313	3.7810	110.0268	293.9318	0.37	0.0789	13.15	0.0123	10.67	0.81	0.0464	7.68	79.0262	8.43	77.1387	10.14	19.0451	1.46	414.94
W65MT	9	0.1153	1.7476	36,1427	139.7390	0.26	0.0622	27.27	0.0126	11.16	0.41	0.0359	24.89	80.6430	9.00	61.3014	16.72	-642.0010	-159.77	-12.56
	10	0 1471	1 2259	26 3008	93 6554	0.28	0.0898	29.51	0.0137	12 95	0.44	0.0475	26.51	87 8023	11 37	87 3321	25.77	74 4967	19.75	117.86
	11	0.1406	1 7780	67 1/62	135 77/3	0.40	0.0000	33.03	0.0101	11 21	0.33	0.0483	32.03	89.9614	10.00	90.8704	30.83	114 8047	36.77	78.36
	12	0.1260	1.5262	27 4562	122 1167	0.43	0.0000	10 /2	0.0141	11.21	0.55	0.0403	14.60	00 2252	10.05	90,6010	16.51	70 1111	10.20	129.95
	12	0.1300	2 1 4 4 2	106 5210	122.1107	0.31	0.0923	16.90	0.0141	11.13	0.00	0.0474	10.00	90.3333	0.40	09.0019	10.51	20.2464	2.46	120.00
		0.1104	3.1442	100.5510	233.7239	0.40	0.0623	10.02	0.0120	11.00	0.09	0.0466	12.22	02.0015	9.49	00.3230	13.51	20.3404	3.40	209.07
	14	0.2155	1.0841	23.4764	89.1263	0.26	0.0856	30.64	0.0136	14.48	0.47	0.0457	27.00	87.0120	12.60	83.4147	25.55	-18.4014	-4.97	-472.86
	15	0.1170	1.2933	47.6973	116.2044	0.41	0.0817	26.38	0.0124	14.40	0.55	0.0478	22.11	79.4719	11.44	79.7744	21.05	88.8458	19.64	89.45
	16	0.0786	2.9442	104.5980	226.7307	0.46	0.0919	17.63	0.0141	11.68	0.66	0.0472	13.21	90.3581	10.55	89.2467	15.73	59.6242	7.87	151.55
	17	0.0801	2.1341	82.0630	165.2187	0.50	0.0821	25.05	0.0133	12.70	0.51	0.0449	21.60	84.9862	10.80	80.1375	20.08	-62.1277	-13.42	-136.79
	1	0.2308	0.7866	32.8620	67.4179	0.49	0.0665	27.27	0.0119	15.64	0.57	0.0405	22.33	76.3545	11.94	65.3947	17.83	-319.4237	-71.34	-23.90
	2	0.0492	1.4146	46.7307	118.9287	0.39	0.0715	22.46	0.0117	15.67	0.70	0.0443	16.09	75.0175	11.76	70.0908	15.74	-94.9639	-15.28	-79.00
	3	0.0667	1.2375	35.8832	99.9249	0.36	0.0696	21.98	0.0119	15.48	0.70	0.0425	15.61	76.0650	11.77	68.2928	15.01	-196.1831	-30.62	-38.77
	4	0.2110	0.8488	21.8625	74.9432	0.29	0.0750	23.74	0.0120	15.41	0.65	0.0454	18.06	76.8213	11.84	73.4177	17.43	-36.0674	-6.51	-212.99
	5	0.0544	1.5470	69.7410	123.1739	0.57	0.0727	19.69	0.0119	15.42	0.78	0.0442	12.23	76.4838	11.80	71.2273	14.02	-101.8928	-12.46	-75.06
	6	0.2959	0.6995	31.3189	60.0642	0.52	0.0763	20.65	0.0126	15.27	0.74	0.0440	13.90	80.5022	12.29	74.6147	15.41	-110.1755	-15.32	-73.07
	7	0.0641	1 3475	55 2276	110 7699	0.50	0.0687	21 99	0.0117	15 77	0.72	0.0425	15.33	75 2318	11.86	67 4735	14 84	-199 6854	-30.61	-37.68
	Å	0.0661	1 5095	58 4762	118 3531	0.49	0.0787	21.66	0.0121	15 30	0.71	0.0474	15.04	77 2383	11.82	76 9490	16.51	67 9716	10.22	113.63
	ă	0.13/3	0.8362	27 71/3	62 0671	0.45	0.0678	21.40	0.0121	15.76	0.50	0.0413	27.25	76 3204	12.03	66 5720	20.06	-271 2171	-73.02	-28.14
W66HD	10	0.1040	0.0302	22.7140	62.0071	0.45	0.0070	22.40	0.0115	11.00	0.50	0.0500	10.11	90.3053	9.01	94 1010	10.50	102 2072	26.04	-20.14
		0.1000	0.0379	23.3409	03.0042	0.37	0.0004	22.10	0.0123	11.05	0.30	0.0300	19.11	70.0002	0.91	70 5000	10.03	193.2073	40.70	41.00
		0.1128	1.1022	40.7008	90.5923	0.45	0.0740	23.20	0.0120	11.47	0.49	0.0449	20.22	10.0986	0.00	12.5308	10.8/	-02.8020	-12.70	-122.13
1	12	0.0736	1.7579	83.2523	128.2975	0.65	0.0786	15.86	0.0121	11.15	0.70	0.0471	11.27	11.4646	8.64	76.8058	12.18	56.3537	6.35	137.46
1	13	0.1585	0.5078	13.6190	41.6057	0.33	0.0703	24.44	0.0118	11.88	0.49	0.0433	21.36	75.5400	8.97	69.0263	16.87	-151.2766	-32.31	-49.94
1	14	0.1907	0.6530	24.0680	49.2641	0.49	0.0750	22.17	0.0126	11.30	0.51	0.0432	19.08	80.7182	9.12	73.4462	16.29	-157.3270	-30.01	-51.31
	15	0.0795	1.0550	31.1880	78.4424	0.40	0.0743	23.56	0.0119	11.69	0.50	0.0452	20.45	76.4220	8.93	72.7605	17.14	-45.9700	-9.40	-166.24
1	16	0.1618	0.5858	21.1135	44.2818	0.48	0.0677	34.65	0.0122	11.60	0.33	0.0403	32.65	77.9745	9.05	66.4797	23.03	-330.0203	-107.75	-23.63
1	17	0.0468	2.9018	148.3681	209.0207	0.71	0.0776	14.05	0.0118	11.25	0.80	0.0477	8.42	75.6613	8.51	75.9273	10.67	84.3109	7.10	89.74
	18	0.1744	0.5366	20.8846	41.8423	0.50	0.0597	45.77	0.0119	12.38	0.27	0.0363	44.06	76.4054	9.46	58.9249	26.97	-604.8795	-266.52	-12.63

Quadro 5 - Analises geocronológicas realizadas (conclusão)

	Spot	f 206a	Pb (ppm)	Th (ppm)	U (ppm)	Th/Ub	²⁰⁷ Pb/ ²³⁵ U	1 s (%)	²⁰⁶ Pb/ ²³⁸ U	1 s (%)	Rhod	²⁰⁷ Pb/ ²⁰⁶ Pbe	1 s (%)	²⁰⁶ Pb/ ²³⁸ U	1 s abs	²⁰⁷ Pb/ ²³⁵ U	1 s abs	²⁰⁷ Pb/ ²⁰⁶ Pb	1 s abs	% Concordance
	1	0.0057	15.9181	1035.8140	883.8582	1.17	0.0912	16.09	0.0139	15.54	0.97	0.0478	4.16	88.6703	13.78	88.6193	14.26	87.2463	3.63	101.63
	2	0.0536	1.5465	37.7832	101.1495	0.37	0.0985	22.43	0.0145	15.16	0.68	0.0494	16.53	92.6558	14.05	95.4245	21.40	165.1901	27.30	56.09
	3	0.0060	12.8404	660.8349	727.8671	0.91	0.0960	15.19	0.0146	14.77	0.97	0.0478	3.55	93.1811	13.76	93.0974	14.14	90.9521	3.23	102.45
	4	0.0320	2.8443	76.4417	185.3014	0.41	0.0941	17.58	0.0147	14.95	0.85	0.0465	9.24	93.8166	14.03	91.2733	16.04	25.2803	2.34	371.11
	5	0.0080	9.0621	478.5750	518.4268	0.92	0.0958	15.65	0.0146	14.87	0.95	0.0476	4.87	93.3116	13.87	92.8597	14.53	81.2655	3.95	114.82
	6	0.0167	4.0393	130.4474	245.0810	0.53	0.0962	17.59	0.0145	14.93	0.85	0.0481	9.30	92.9745	13.88	93.3069	16.41	101.8131	9.46	91.32
	7	0.0122	4.6149	166.2754	284.2303	0.59	0.0972	20.84	0.0143	15.54	0.75	0.0494	13.89	91.2897	14.19	94.1550	19.62	167.3665	23.24	54.54
	8	0.0497	1.5423	30.4055	100.5569	0.30	0.0954	34.11	0.0146	15.46	0.45	0.0474	30.40	93.4652	14.45	92.5302	31.56	68.4875	20.82	136.47
W57BR	9	0.0123	5.4907	198.5692	351.1894	0.57	0.0931	16.36	0.0142	15.20	0.93	0.0475	6.05	91.1102	13.85	90.4266	14.80	72.4241	4.38	125.80
	10	0.0436	2.9160	102.4304	186.2709	0.55	0.0930	18.46	0.0145	13.48	0.73	0.0465	12.62	92.8328	12.51	90.2830	16.67	23.3964	2.95	396.78
	11	0.0286	2.9174	65.6371	201.9025	0.33	0.0872	18.01	0.0142	13.16	0.73	0.0447	12.29	90.6131	11.93	84.8525	15.28	-74.3957	-9.14	-121.80
	12	0.0202	7.9996	451.5024	455.7474	0.99	0.0948	13.87	0.0143	12.99	0.94	0.0481	4.84	91.5931	11.90	92.0112	12.76	102.8666	4.98	89.04
	13	0.0694	1.2621	26.0208	84.9058	0.31	0.0983	20.62	0.0149	12.70	0.62	0.0478	16.24	95.5215	12.13	95.2186	19.63	87.6389	14.23	108.99
	14	0.0443	2.3895	76.7936	158.8391	0.48	0.0960	16.03	0.0146	13.08	0.82	0.0477	9.27	93.3213	12.21	93.0677	14.92	86.5705	8.03	107.80
	15	0.0064	12.2179	524.4992	672.8650	0.78	0.1106	12.19	0.0168	11.02	0.90	0.0476	5.20	107.7037	11.87	106.5340	12.98	80.4564	4.18	133.87
	16	0.0362	2.6633	57.7996	176.3493	0.33	0.0962	20.92	0.0154	12.51	0.60	0.0454	16.77	98.2607	12.29	93.2478	19.51	-33.1896	-5.57	-296.06
	17	0.0336	3.1319	121.6411	197.6565	0.62	0.0915	19.34	0.0150	12.41	0.64	0.0442	14.83	96.0614	11.92	88.8587	17.19	-100.5706	-14.92	-95.52
	18	0.0262	2.5784	85.1819	175.9125	0.48	0.0862	20.76	0.0147	12.59	0.61	0.0425	16.51	94.0727	11.85	83.9112	17.42	-196.5251	-32.45	-47.87
	1	0.1796	1.6294	50.9034	114.7404	0.44	0.0825	41.42	0.0135	24.40	0.59	0.0442	33.47	86.6387	21.14	80.4676	33.33	-99.1193	-33.17	-87.41
	2	0.0789	3.5584	203.9179	260.0403	0.78	0.0874	27.09	0.0119	24.69	0.91	0.0533	11.15	76.2103	18.82	85.0345	23.04	340.4609	37.98	22.38
	3	0.1291	1.7643	49.8058	123.0074	0.40	0.0863	38.15	0.0144	22.12	0.58	0.0435	31.08	92.0975	20.37	84.0419	32.06	-139.2706	-43.28	-66.13
	4	0.0967	3.4508	85.7427	188.9026	0.45	0.1012	30.17	0.0153	24.01	0.80	0.0480	18.27	97.8580	23.50	97.9206	29.54	99.4448	18.17	98.40
	5	0.1156	2.7061	96.4011	201.5154	0.48	0.0600	39.74	0.0098	30.49	0.77	0.0442	25.48	63.1696	19.26	59.1329	23.50	-101.4448	-25.85	-62.27
	6	0.1918	1.5774	40.5958	127.8441	0.32	0.0711	41.12	0.0110	27.67	0.67	0.0470	30.42	70.3223	19.46	69.7205	28.67	49.1233	14.94	143.15
	7	0.1293	2.6237	87.2753	150.9932	0.58	0.1001	36.02	0.0171	20.95	0.58	0.0426	29.30	109.0656	22.84	96.9097	34.90	-192.8498	-56.50	-56.55
	8	0.1228	3.1581	95.6630	211.8908	0.45	0.0926	30.50	0.0149	24.08	0.79	0.0452	18.71	95.0929	22.90	89.9080	27.42	-45.6417	-8.54	-208.35
W69AT	9	0.0718	3.9235	120.0791	250.3957	0.48	0.1001	23.73	0.0156	19.80	0.83	0.0465	13.07	99.7370	19.75	96.8427	22.98	26.1418	3.42	381.52
	10	0.1693	1.5899	54.5523	107.6224	0.51	0.0969	51.55	0.0136	35.69	0.69	0.0518	37.20	86.8492	31.00	93.8702	48.39	276.1672	102.72	31.45
	11	0.1309	2.4571	101.4395	188.2645	0.54	0.0803	48.95	0.0113	42.43	0.87	0.0513	24.41	72.7372	30.86	78.4494	38.40	256.1070	62.52	28.40
	12	0.1388	2.3957	149.9539	170.4841	0.88	0.0757	49.07	0.0109	43.98	0.90	0.0503	21.77	69.9235	30.75	74.0936	36.36	210.8044	45.88	33.17
	13	0.0557	3.6303	186.3226	246.7942	0.75	0.0812	40.65	0.0128	36.30	0.89	0.0461	18.31	81.8016	29.69	79.3155	32.24	5.0513	0.92	1619.42
	14	0.1262	2.6106	99.2635	185.1525	0.54	0.0721	49.24	0.0117	41.72	0.85	0.0446	26.16	75.1823	31.37	70.6580	34.79	-79.9238	-20.91	-94.07
	15	0.0528	4.9901	162.0290	335.5603	0.48	0.0910	40.06	0.0134	36.72	0.92	0.0492	16.01	85.8093	31.51	88.3919	35.41	158.7021	25.41	54.07
	16	0.1378	2.7279	92.2651	163.1627	0.57	0.1037	36.92	0.0156	29.60	0.80	0.0481	22.07	99.9165	29.57	100.1841	36.99	106.5548	23.52	93.77
	17	0.1800	2.1573	51.5648	151.6510	0.34	0.0827	50.75	0.0128	37.37	0.74	0.0468	34.33	82.0088	30.64	80.6723	40.94	41.2717	14.17	198.70
	18	0.1053	3.6300	224.1168	237.8393	0.94	0.0853	40.88	0.0126	37.18	0.91	0.0491	16.99	80.7527	30.02	83.1048	33.97	151.2348	25.69	53.40

Fonte: O autor, 2017.

4.1 Bloco Oeste ou Batólito de Santa Fé

No Corpo Oeste ou Batólito de Santa Fé, foi possível datar quatro amostras (Figura 23). As idades obtidas nessas amostras são estatisticamente iguais, em torno de 80 Ma. As imagens de catadoluminescência correspondem a zircões euedrais ígneos, com crescimento oscilatório, bem cristalizados e sem núcleos herdados (Figura 24).

Figura 23 – Diagramas de concórdia do Bloco Oeste ou Batólito de Santa Fé

Legenda: Diagramas de concórdia das quatro amostras do Batólito de Santa Fé, elaborados com o software Isoplot (versão 4.14); número de grãos utilizados nos análises (N); Probabilidade de concordância (Probability (of concordance)); Desvio médio ponderado quadrado (MSWD).

Fonte: O autor, 2017.

Figura 24 – Imagens de catodoluminiscência de alguns zircões do Bloco Oeste ou Batólito de Santa Fé e os pontos analisados

Legenda: imagens obtidas no MEV (Microscópio Eletrônico de Varredura) no MultiLab/UERJ. O circulo amarelho e sua numeracao correspondem aos dados na Quadro geocronologica anexada.
Fonte: O autor, 2017.

As amostras foram coletadas nas distintas áreas do Batólito de Santa Fe e tem uma boa distribuição espacial nele, mesmo assim, as idades são muito similares e consistentes, em torno dede 80,4 ±1 Ma. Essas são as primeiras idades U-Pb em zircão no Batólito de Santa Fé e são menores que os 90 Ma considerados na bibliografia para este bloco, idade U-Pb achada no Gabro de Altamira, plúton associado ao Batólito Santa Fé e localizado a 10 Km ao sul deste (Zapata, 2013).

Na amostra com nome WSF (*Santa Fe*) foram analisados dezoito grãos de zircão, com tamanho variado entre 50 e 200 μ m, dos quais onze grãos atenderam aos padrões estabelecidos para a utilização dos dados (capítulo 2.4.2 e 2.4.4 – metodologia) nas discussões e permitiram calcular uma idade discordante de 78,4 ± 6,4 Ma. Esta idade é a menos confiável de nossa pesquisa pelo fato da maioria dos dados serem discordantes. A amostra foi coletada na antiga *Vía al mar*, a 2 km do

centro urbano do Município de Santa Fé de Antioquia e trata-se de um diorito inalterado cujo afloramento foram encontrados alguns xenólitos máficos orientados que correspondem ao Granulito de Pantanillo. Alguns dos grãos apresentam proporções de ²⁰⁶Pb altas.

Na amostra nomeada W68SC (*Subida Caicedo*) foram analisados vinte e sete grãos de zircão com tamanho entre 150 e 400 μ m, dezoito deles atenderam aos padrões estabelecidos para a utilização dos dados nas discussões e permitiram calcular uma idade concordante de 79 ± 2,4 Ma. Todos os grãos desta amostra apresentaram erros e idades semelhantes. Esta amostra foi coletada na zona sul do Batólito de Santa Fe, na estrada que vai para a Cidade de Caicedo e trata-se de um quartzo-diorito.

Na amostra nomeada W64SA (*Subida Angelica*) foram analisados vinte e um grãos de zircão com tamanhos de 150 até 300 μ m, desses, dezoito atenderam os padrões e permitiram calcular uma idade concordante de 79 ± 14 Ma. A idade apresenta um erro grande porque cada um dos grãos apresenta um erro considerável, porém, estes dados apresentam boa precisão. Esta amostra foi coletada na zona central do Batólito de Santa Fé, na estrada de terra que leva ao *Poblado de La Angelica*. Trata-se de um diorito, foram achados múltiplos diques básicos cortando o batólito. A amostra apresenta meteorização intermediária, provavelmente esta meteorização é a responsável pelos erros apresentados pois as análises apresentam quantidade considerável de ²⁰⁶Pb.

Na amostra nomeada WTRCA *(Trocha Cauca)* foram analisados vinte e sete grãos de zircão com tamanhos de 100 até 300 µm, destes, dezenove atenderam os padrões e permitiram calcular uma idade discordante de 81,4 ± 2 Ma. Os dados de cada grão apresentam um erro pequeno associado a uma boa exatidão, mas sem precisão. Esta amostra foi coletada na zona norte do Batólito de Santa Fé, na trilha para a Cidade de Sabanalarga que leva ao Rio Cauca e ao *Poblado de Orobajo*. A rocha foi identificada como um diorito. O afloramento presenta abundantes xenólitos da Granulita de Pantanillo e diques básicos e intermediários associados ao magmatismo Terciário presente na zona.

As idades achadas nas rochas do Batólito de Santa Fe são concordantes. Calculando a média ponderada dos dados das 4 amostras, é possível obter um intervalo de 80.3 ± 2.9 Ma como a idade de cristalização do batólito (Figura 25). idade24). Idade menor do que os 90 Ma reportados por Zapata (2013).

Figura 25 – Idades e erros das rochas do Batólito de Santa Fe e sua média ponderada

Legenda: Média ponderada das idades do Batólito de Santa Fe, calculado com Isoplot (versão 4.14); Probabilidade de concordância (probability); Desvio médio ponderado quadrado (MSWD).
Fonte: O autor, 2017.

4.1.1 Stock de Buriticá

No *Stock* de Buriticá, identificado como corpo satélite do Batólito de Santa Fe, foi coletada apenas uma amostra que apresenta uma idade concordante de 93,9 ± 3 Ma. Nessa amostra foram analisados dezoito grãos de zircão, todos eles atenderam aos padrões estabelecidos e foram utilizados para as análises.

Esses grãos são todos ígneos, sem núcleos herdados, apresentam um tamanho muito variável (100 a 500 µm). Ao plotar as análises de cada um dos grãos no diagrama de concórdia, observa-se que as elipses de erro dos grãos são concêntricas umas às outras, representando, assim, uma idade confiável, precisa e exata (Figura 26).

Figura 26 – Diagrama de concordia,concórdia e imagem de catodoluminiscência de alguns zircões do *Stock* de Buriticá e os pontos analisados

A idade do *Stock* de Buriticá é menor que os 102 Ma reportada por Weber et al., (2015) e é, aproximadamente, 13,6 Ma maior do que a idade achada no Batólito de Santa Fé. Aquela diferença de idade entre o Batólito de Santa Fe e o *Stock* de Buriticá (Figura 27) é compatível com os dados apresentados por Weber et al., (2015).

80

70

60

Figura 27 - Comparação de idades e erros das rochas do Batólito de Santa Fe e

Legenda: Idades do Batólito de Santa Fe (Vermelho) e do *Stock* de Buriticá (Laranja), calculado com Isoplot (versão 4.14). Fonte: O autor, 2017.

4.2 Bloco Leste ou Batólito La Honda-Sabanalarga

No Bloco Leste ou Batólito La Honda-Sabanalarga, também foi possível datar quatro amostras (Figura 28), estas são as primeiras idades U-Pb em zircão no Batólito de La Honda-Sabanalarga.

Figura 28 – Diagramas de concórdia do Bloco Leste ou Batólito de La Honda-Sabanalarga

Fonte: O autor, 2017.

As idades obtidas em três delas são tecnicamente iguais e em torno de 76 Ma. A outra amostra tem uma idade de 85 Ma. As imagens de catadoluminiscência, da mesma forma que as do Bloco Oeste, correspondem a zircões ígneos bem cristalizados e sem núcleos herdados (Figura 29) mas com um tamanho maior que

Legenda: Diagramas de concórdia das quatro amostras do Batólito La Honda-Sabanalarga, elaborados no software Isoplot (versão 4.14); número de grãos utilizados nos análises (N); Probabilidade de concordância (Probability (of concordance)); Desvio médio ponderado quadrado (MSWD).

varia de 200 a 500 µm. As amostras foram coletadas na zona central e sul do batólito e tem uma boa distribuição espacial na unidade. Na zona norte do batólito não há amostras pela presença de guerrilheiros e outros grupos armados na região.

Figura 29 – Imagens de catodoluminiscência de alguns zircões do Bloco Leste ou Batólito de La Honda-Sabanalarga e os pontos analisados

Legenda: Imagens de catodoluminiscência de alguns zircões do Batólito de La Honda-Sabanalarga, imagens obtidas no MEV (Microscópio Eletrônico de Varredura) no MultiLab/UERJ. O circulo amarelho e sua numeracao correspondem aos dados na Quadro geocronologica anexada. Fonte: O autor, 2017.

Na amostra chamada WSS (*Sobresabana*) foram analisados dezoito grãos de zircão com tamanhos entre 250 e 500 μ m, destes, quinze grãos atenderam aos padrões e os dados serão utilizados nas discussões, permitiram calcular uma idade discordante de 76,2 ± 3,4 Ma. Essa amostra é um tonalito de granulometria grossa e foi coletada na estrada de terra que leva ao centro do *Poblado de Sobresabana*.

Na amostra nomeada W67TR (*Trocha*) representa um tonalito homogêneo coletado no extremo norte de nossa área de pesquisa e na zona central do Corpo Leste ou Batólito de La Honda-Sabanalarga, na estrada que comunica a Cidade de Sabanalarga com o centro do *Poblado de Orito*. Foram analisados trinta e dois grãos

de zircão com tamanhos que variam desde 200 até 400 μ m, e apresentaram muito ²⁰⁶Pb e só foi possível obter doze grãos de zircão ajustados aos patrões cuja idade calculada com estes grãos foi discordante e de 74,6 ± 7,6 Ma.

Na amostra nomeada W65MT (Afloramento perto da intrusão nas rochas metamórficas) foram analisados dezoito grãos de zircão com tamanhos entre 200 e 300 µm, dos quais dezessete atenderam aos padrões de controle interno estabelecidos para calibrar os resultados e permitiram calcular uma idade discordante de 85,4 ± 2.4 Ma. Mesmo discordante, a idade apresenta um erro pequeno. Os grãos nessa amostra se apresentam em duas populações com erros e idades semelhantes. Essa amostra foi coletada em um afloramento onde o Batólito La Honda-Sabanalarga intrude nas rochas metamórficas do Terreno Tahamí e lamentavelmente os zircões dessa amostra não apresentam núcleos herdados ou zircões metamórficos. O afloramento é localizado na zona sul do batólito e trata-se de um tonalito intrudido em anfibolitos.

Na amostra nomeada W66HD (Honda) trata-se de um tonalito sem xenólitos diques, deformação ou alteração hidrotermal onde foram analisados dezoito grãos de zircão com tamanhos entre 200 e 400 µm onde todos atenderam aos padrões estabelecidos e permitiram calcular uma idade discordante de 76,7 ± 2,4 Ma. Os dados de cada grão apresentam um erro pequeno, boa exatidão, mas sem precisão. Os grãos nessa amostra se apresentam em duas populações com erros e idades semelhantes. Essa amostra foi coletada no centro do Poblado de La Honda, na Estrada Liborina-Sabanalarga.

As idades achadas nas rochas do Batólito de La Honda-Sabanalarga não são concordantes (Figura 30). É possível calcular uma idade média ponderada de 79.9 ± 8.1 Ma, mas está fora do rango de erro de 3 das 4 amostras. Esta discordância é gerada pela diferencia na idade da amostra W65MT, esta está fora do rango apresentado pelas outras três idades. A diferencia das idades indicam que o Batólito de La Honda-Sabanalarga é formado por dois pulsos magmáticos diferentes, um deles representado nas amostras WSS, W67TR e W66HD, ou outro representado na amostra W65MT.

Figura 30 – Idades e erros das rochas do Batólito de La Honda-Sabanalarga e sua média ponderada

Legenda: Calculado com Isoplot (versão 4.14); Probabilidade de concordância (probability); Desvio médio ponderado quadrado (MSWD). Fonte: O autor, 2017.

As três idades em torno dos 76 Ma foram analisadas e foi possível obter uma idade média ponderada de 76,4 \pm 3.7 Ma para o pulso magmático que as gerou (Figura 31). O Batólito de La Honda-Sabanalarga foi formado por dos pulsos magmáticos. O primeiro a 85,4 \pm 2.4 Ma e o segundo a 76,4 \pm 3.7 Ma.

Figura 31 – Idades e erros de três amostras do Batólito La Honda-Sabanalarga e sua média ponderada

Legenda: Média ponderada das idades de três amostras do Batólito de La Honda-Sabanalarga, calculado com Isoplot (versão 4.14); Probabilidade de concordância (probability); Desvio médio ponderado quadrado (MSWD).

Fonte: O autor, 2017.

Todas as amostras do Batólito de La Honda-Sabanalarga apresentam zircões com tamanhos, formas e imagens de catodoluminiscência muito homogêneas, mas

que nos diagramas de concórdia plotam com duas populações de elipses (Figura 28), populações, refletindo duas composições isotópicas. Uma das populações apresenta elipses alongadas horizontalmente, associados a erros maiores na proporção ²⁰⁷Pb/²³⁵U. A segunda população apresenta elipses alongadas diagonalmente com erros maiores na proporção ²⁰⁶Pb/²³⁸U.

As idades encontradas no primeiro pulso magmático do Batólito de La Honda-Sabanalarga (76,4 \pm 3,7) são similares as idades do Batólito de Santa Fe (80,3 \pm 2,9) e levando-se em conta os erros nas idades, são contemporâneos.

4.3 Stock de Altavista

O *Stock* de Altavista e uma das unidades mapeadas como plúton satélite do Batólito Antioqueño, a unidade ígnea mais importante na área devido a sua extensão. As analises U-Pb realizadas nele estão focadas a obter uma amostra do Batólito Antioqueño para a comparação com os batólitos de Santa Fe e La Honda-Sabanalarga.

Para o *Stock* de Altavista foi datada uma amostra, chamada de W69AT (Altavista), foram obtidos dezoito grãos de zircão e todos atenderam aos padrões estabelecidos e foram utilizados para o cálculo que atingiu uma idade concordante de 84 \pm 5.6 Ma (Figura 32). A amostra apresentou grãos de zircões ígneos, bem cristalizados, com crescimento oscilatório e sem núcleos herdados, com tamanho variando de 75 a 200 µm.

Esta amostra apresenta semelhança com a amostra W65MT (Batólito de La Honda-Sabanalaga). Além de suas idades (Figura 33), os zircões das duas amostras indicam que estas, mesmo parte de unidades geológicas distintas, poderiam ter uma relação genética. As imagens de catodoluminescência das amostras W65MT (Batólito La Honda-Sabanalaga) e W69AT (*Stock* de Altavista), mostram padrões de crescimento coerentes e concordantes caracterizados por um anel de alta reflectância na parte média dos cristais (Figura 34).

Figura 32 – Diagrama de concórdia e imagem de catodoluminiscência de alguns zircões do *Stock* de Altavista e os pontos analisados em cada zircão

Legenda: Esquerda - Diagramas de concórdia da amostra do *Stock* de Altavista, elaborados com o software Isoplot (versão 4.14); número de grãos utilizados nos análises (N); Probabilidade de concordância (Probability (of concordance)); Desvio médio ponderado quadrado (MSWD); Direita - Imagens de catodoluminiscência de alguns zircões do *Stock* de Altavista, imagens obtidas no MEV (Microscópio Eletrônico de Varredura) no MultiLab/UERJ. O circulo amarelho e sua numeracao correspondem aos dados na Quadro geocronologica anexada.

Fonte: O autor, 2017.

Figura 33 – Idades e erros de uma amostra do Batólito La Honda-Sabanalarga (W65MT), uma do *Stock* de Altavista (W69AT) e sua média ponderada

Legenda: Média ponderada das idades de uma amostra do Batólito La Honda-Sabanalarga (W65MT) e uma do Stock de Altavista (W69AT) calculado com Isoplot (versão 4.14); Probabilidade de concordância (probability); Desvio médio ponderado quadrado (MSWD). Fonte: O autor, 2017.

A idade, a distribuição no diagrama de concórdia dos diferentes dados e os erros associados a cada um dos grãos da amostra, fortalecem a ideia de uma relação genética entre as unidades, Batólito Antioqueño e o Batólito de La Honda-Sabanalarga.

Figura 34 - Imagens de catodoluminescência de alguns zircões das amostras W65MT (Batólito de La Honda- Sabanalarga) e W69AT (*Stock* de Altavista)

Legenda: Imagens de catodoluminiscência de alguns zircões do *Stock* de Altavista, imagens obtidas no MEV (Microscópio Eletrônico de Varredura) no MultiLab/UERJ. Fonte: O autor, 2017.

DISCUSSÕES E CONCLUSÕES

O antigamente mapeado como Batólito de Sabanalarga são na realidade três unidades geológicas diferentes. De oeste a leste são Batólito de Santa Fé, Terreno de Crosta Oceânica e Batólito de La Honda-Sabanalarga. O batólito de Santa Fé é um plúton gerado por pelo menos dois pulsos magmáticos onde o primeiro está representado pelo *Stock* de Buriticá a 93,9 \pm 3 Ma e o segundo é representado pelo corpo principal e apresenta idades de 80.3 \pm 2.9 Ma, magmatismo gerado no arco de ilha na borda leste da Placa do Caribe definido por Rodriguez et al., (2012) e Weber et al., (2015). O Batólito de La Honda-Sabanalarga é um plúton com dois pulsos magmáticos como idades de 85,4 \pm 2.4 Ma e 76,4 \pm 3.7 Ma em um arco continental na borda oeste do Terreno Tahamí definido por Ordoñez & Pimentel (2001). O Terreno de Crosta Oceânica poderia ser a continuação ao norte do Terreno Quebradagrande ou um fragmento de crosta oceânica gerada na apertura do Caribe, presa entre os terrenos Caribe e Tahamí. Desta forma pode-se destacar os seguintes aspectos dos resultados aqui apresentados.

Aspectos Relevantes sobre a Geologia Local

A fácies máfica-ultramáfica definida por Hall et al. (1972) foi cartografada em detalhe. As relações de campo e as litologias identificadas correspondem a uma Sequência Vulcano-sedimentar, apresenta lentes de peridotito de até 10 metros de espessura, afloramentos de *pillow lavas* e fluxos basálticos intercalados com camadas sedimentares. A sequência toda está fortemente deformada, dobrada e apresenta metamorfismo em fácies xisto verde, além de ser separada de suas unidades vizinhas por falhas.

É possível sugerir essa sequência como crosta oceânica deformada e com metamorfismo. Até hoje, na área da fácies Máfica-Ultramáfica são mapeados os terrenos Caribe e Tahamí, mas o metamorfismo fácies xisto verde da sequência diferem do metamorfismo fácies anfibolito e granulito das rochas do Terreno Tahamí e da crosta oceânica sem metamorfismo regional do Terreno Caribe. Esta crosta oceânica é uma unidade geológica independente destes terrenos, com uma gênese e história geológica independente das rochas do Terreno Tahamí, das rochas do Terreno Caribe e dos batólitos que intrudem neles.

O terreno composto pela crosta oceânica na zona entre o Terreno Tahamí e o Terreno Caribe poderia ser uma continuação ao norte do Terreno Quebadagrande ou ser um remanescente da crosta oceânica gerada na separação de Gondwana e Laurentia, hoje conhecida como Paleo-Caribe. Estudos geoquímicos e isotópicos são necessários para definir com clareza qual é a origem desta unidade e sua relação com os terrenos Quebradagrande e Caribe.

A presença dessa unidade e sua posição tecto-estratigráfica do Terreno de Crosta Oceânica implica que o Bloco Leste e o Bloco Oeste da unidade antigamente mapeada como Batólito de Sabanalarga são unidades diferentes.

O Bloco Oeste é a fácies intermediária do antigamente chamado Batólito de Sabanalarga. Essa fácies é caracterizada por gabros e dioritos com proporções variáveis de hornblenda e plagioclásio. A fácies intrude nas rochas do Terreno Caribe segundo relação de campo. As quatro amostras analisadas desse bloco são as primeiras idades U-Pb em zircões para o Bloco Oeste e indicam uma idade de cristalização de 80.3 ± 2.9 Ma.

Segundo Weber et al. (2015) o Bloco Oeste tem o nome de batólito de Santa Fé, apresenta abundantes xenólitos do Granulito de Pantanillo. As relações e texturas achadas no trabalho de campo confirmam que o granulito máfico de Pantanillo é o melanosoma de um processo de migmatização onde a fácies intermediária do batólito é o leucosoma, ratificando a teoria de Weber et al., (2015) onde o Bloco Oeste ou Batólito de Santa Fe é o resultado da migmatização do Granulito de Pantanillo.

O Stock de Buriticá faz parte das unidades a oeste da Falha de Sabanalarga e presenta uma idade ígnea de $93,9 \pm 3$ Ma. Esta idade é um pouco mais jovem da reportada por Weber et al., (2015) mas levando-se em conta as margens de erro das duas análises, as idades são compatíveis. O *Stock* de Buriticá é a unidade granítica mais velha na área de estudo e representa o início do magmatismo do Batólito de Santa Fé.

O Bloco Leste do Batólito de Sabanalarga intrude as rochas metamórficas do Terreno Tahamí. As quatro amostras analisadas neste bloco são as primeiras idades U-Pb em zircões para e representam dois pulsos magmáticos com idades de 85,4 ± 2.4 Ma e 76,4 \pm 3.7 Ma. Pela sua intrusão nas rochas metamórficas do Terreno Tahamí, os dados geocronológicos e a morfologia dos zircões, é possível relacionar o pulso de 85,4 \pm 2.4 Ma do Bloco Leste com o magmatismo do *Stock* de Altavista (84 \pm 5.6 Ma) e consequentemente com o Batólito Antioqueño.

O Bloco Leste tem seus principais afloramentos no Município de Sabanalarga e no Poblado de La Honda, segundo as recomendações para a nomeação das rochas ígneas (Le Bas & Streckeisen, 1991), o nome para esta unidade e que permite lhe diferenciar do antigo Batólito de Sabanalarga, recebendo, assim, o nome de Batólito de La Honda-Sabanalarga.

O terreno composto pela crosta oceânica que separa os dois blocos do antigamente conhecido como Batólito de Sabanalarga, as unidades intrudidas por cada um dos blocos e as características geocronológicas destes, permite concluir que o antes definido como Batólito de Sabanalarga são três unidades geológicas diferentes. O Bloco Oeste ou Batólito de Santa Fe, o Terreno de Crosta Oceânica e o Bloco Leste ou Batólito La Honda-Sabanalarga. Essas unidades foram geradas em latitudes e longitudes diferentes, mas o processo de colisão e acreção da margem noroeste da Placa Sul-americana no Cretáceo Superior e Cenozoico, além do movimento dextral do sistema de falhas de Cauca-Romeral, tem colocado as unidades uma ao lado da outra.

A falha definida como Falha de Sabanalarga, pelo menos no trecho Liborina-Sabanalarga, são duas falhas paralelas, uma a cada lado do terreno de crosta oceânica, estas duas falhas paralelas são a continuação ao norte das falhas Caucaoeste e a falha San Jerónimo. A falha que separa o Batólito de Santa Fé do terreno de crosta oceânica é a continuação ao norte da falha Cauca-oeste e a falha que separa o Batólito de La Honda-Sabanalarga do terreno de crosta oceânica é a continuação ao norte da falha San Jerónimo.

Aspectos Relevantes sobre a Geologia Regional

No Cretáceo Médio e Superior no nordeste do Pacífico estava ocorrendo uma forte anomalia térmica (Villagómez et al., 2011) que está refletida na nossa área de pesquisa na existência de três zonas de subdução quase simultâneas. A primeira é

representada pelo Batólito de Santa Fé e *Stock* de Buriticá, a segunda pelo Batólito La Honda-Sabanalarga e Batólito Antioqueño, a terceira pelo Terreno Quebradagrande.

A intrusão do Batólito de Santa Fé nos basaltos do Terreno Caribe e a posterior ocorrência de blocos do batólito nos basaltos, permite afirmar que existem pelo menos duas gerações de basaltos no Terreno Caribe, uma pré-Batólito de Santa Fé e outra pós-batólito. Essa hipótese é compatível com a divisão da Formação Barroso em duas unidades chamadas de Arco Vulcânico da Formação Barroso e diabásios de San José de Urama, proposta por Rodriguez et al., (2013).

As idades U-Pb e o contexto regional apresentados por Mora-Bohórquez et al. (2017), são similares aos achados na nossa pesquisa. Os dados apresentados para a região norte da Colômbia no Plúton de Cicuco 2, com idade de 84 Ma, são compatíveis com a continuação ao norte do arco que gerou o Batólito Antioqueño e o Batólito de La Honda-Sabanalarga. O plúton da Bonga com idades entre 75-90 Ma é compatível com o magmatismo do Batólito de Santa Fé e o *Stock* de Buriticá e foi interpretado como uma continuação ao norte do Arco Barroso-Sabanalarga. A crosta oceânica onde intrude o Plúton da Bonga é interpretada por Mora-Bohórquez et al., (2017) como o Terreno Quebradagrande, mas o magmatismo desta idade intrude no Terreno Caribe e a crosta oceânica reportada por eles, corresponderia a esta unidade.

Aspectos estruturais

A Falha Espiritu Santo é considerada hoje na bibliografia um limite tectônico importante, mas no trabalho de campo na área da falha, não foi possível achar diferenças nas rochas de um ou outro lado da falha. Na região de Liborina, esta falha não representa um limite tectônico e as unidades de um e outro lado da falha são as mesmas.

Os estilos estruturais achados no campo permitem caracterizar diferentes deformações ao longo do tempo geológico para a região. A primeira é uma deformação mais dúctil que tem lugar nos basaltos da Formação Barroso e gera milonitos e é anterior à intrusão do Batólito de Santa Fé. A segunda deformação

também é dúctil e afeta os basaltos da Formação Barroso e o Batólito de Santa Fe gerando ultra milonitos. O terceiro estágio deformacional é associado a colisão dos blocos e a deformação do terreno de crosta oceânica.

Arcos magmáticos

A crosta oceânica do Caribe e as rochas do Terreno Quebradagrande estavam se formando por volta de 130-100 Ma.

Há 95-100 Ma, quando no leste da Placa do Pacífico, um *hot spot* inicia o desenvolvimento do *Plateau* oceânico do Caribe, o *Stock* de Buriticá foi formado pela ressurgência astenosférica (Weber et al., 2015) e o movimento relativo a oeste das placas Norte-americana, Sul-americana e a zona de espalhamento da Paleo Placa do Caribe, gerou a subdução e o início do arco de ilhas na borda leste da Placa do Caribe.

No período entre 85-75 Ma, foram desenvolvidos os arcos no Terreno Tahamí e na Placa do Caribe. O magmatismo no Terreno Tahamí é caracterizado pelo Batólito Antioqueño, o Batólito de La Honda-Sabanalarga e outros. Na Placa do Caribe, é caracterizado pelo Batólito de Santa Fé e alguns outros plútons simultâneos, como o batólito de Aruba, batólito de Buga, Plúton Bonga e Granito de Pujilí. No momento da geração do Batalito de Santa Fe, Batolito de La Honda-Sabanalarga e o Terreno de Crosta Oceânica, as três unidades estavam em diferentes longitudes e latitudes.

A partir de 65 Ma são desenvolvidos os falhamentos destrais que separam um bloco da Placa do Caribe e geraram o Terreno Caribe. O processo de acreção deste terreno e os deslocamentos das falhas do sistema Cauca-Romeral colocaram as unidades (Batalito de Santa Fe, Batolito de La Honda-Sabanalarga e o Terreno de Crosta Oceânica) uma em frente a outra (Figura 35, 36 e 37).

O magmatismo da área de Sabanalarga foi gerado no Cretáceo Superior e representa pelo menos três arcos magmáticos diferentes onde os arcos do Batólito Antioqueño e o arco Barroso-Sabanalarga são simultâneos e com direções de subdução opostas, oeste para leste no associado ao Batólito Antioqueño e leste para oeste no associado ao arco Barroso-Sabanalarga.

A configuração de múltiplos terrenos alóctones apresentada ao sul da área de pesquisa e representada pelos terrenos Arquía e Quebradagrande, continua na área de pesquisa e ao norte dela e pode se estender até o norte da Colômbia.

Legenda: QG – Quebradagrande; AR – Arquia; Br – Buriticá; TC – Terreno Caribe. Fonte: Modificado de Villagómez et al., (2011) e Pindell & Kennan (2009).

Figura 36 - Posição aproximada dos arcos continental e de ilhas no Cretáceo e hoje

Fonte: O autor, 2017.

Figura 37 – Perfis dos arcos de ilha e continental que geraram os batólitos de Santa Fé e La Honda-Sabanalarga

Legenda: Terreno Caribe (verde claro); Batolito de Santa Fe (laranja); Terreno Tahamí (roxo); Batolito La Honda-Sabanalarga (vermelho); Terreno de crosta oceânica (verde escuro). Fonte: O autor, 2017.

REFERÊNCIAS

- Álvarez, E. & González, H. 1978. Geologia y geoquímica del Cuadrángulo I-7 (Urrao). Ingeominas. Informe 1761. Medellín. 347P.
- Alves, M. I., 2016. Metassedimentos do grupo Andrelândia e Complexo Paraíba do Sul na região da zona de cisalhamento Guaçuí (ES): idades de U-Pb/Lu-Hf (LA-ICP-MS) em zircões detriticos para a análise de proveniência. Dissertação de Mestrado, Universidade do Estado do Rio de Janeiro-UERJ.
- Botero, G. A. 1963. Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de la Facultad de Minas, 57: 1-101.
- Bruce, R., Nelson, E., Weaver S., Lux, D. 1991. Temporal and Spatial Variations in the Southern Patagonian Batholith; Constraints on Magmatic Arc Development. In R. S. Harmon and C. W. Rapela (eds.) "Andean Magmatism and its Tectonic Setting." Geological Society of America, Special Paper 265, p. 1-12, Boulder.
- Bustamante, A., Juliani, C., Essene, E. J., Hall, C. M., & Hyppolito, T. 2011a. Geochemical constraints on blueschist- and amphibolite-facies rocks of the Central Cordillera of Colombia: the Andean Barragán region: International Geology Review, v. 54, p. 1013-1030.
- Bustamante, A., Juliani, C., Hall, C. M. & Essene, E. J. 2011b. ⁴⁰Ar/³⁹Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: Implications on the styles of accretion in the northern Andes. Geologica Acta, 9(3–4): 351– 362.
- Cardona, A., Cordani, U., Nutman, A. 2008. U-Pb SHRIMP zircon, ⁴⁰Ar/³⁹Ar geochronology and Nd isotopes from gneissic and granitoid rocks of the Illescas massif, Perú: a southern extension of a fragmented Late Paleozoic orogen?. VI South American Symposium on Isotope Geology. p. 78. San Carlos de Bariloche.
- Cardona, A., Valencia, V. A., Bustamante, C., García, A., Ojeda, G., Ruiz, J., Saldarriaga, M. & Weber, M. 2010. Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. Journal of South American Earth Sciences, 29(4): 784–804.
- Cardona, J.D. 2010. Análisis petrográfico de rocas metamórficas al noroccidente de Santa Fe de Antioquia en el llamado Batólito de Sabanalarga al occidente de la falla Cauca Almaguer. Tesis de Grado, Universidad Nacional de Colombia, Medellín, 72p.
- Cediel, F., Shaw, R., & Caceres, C. 2003. Tectonic Assembly of the Northern Andean block, in The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics: AAPG Bulletin, v. 79, p. 815 – 848.

- Chemale, F., Kawashita, K., Dussin, I. A., Nunes Avila, J., Justino, D. y Bertotti, A. 2012. U-Pb zircon in situ dating with LA-MC-ICP-MS using mixed detector configuration. Anais da Academia Brasileira de Ciencias.
- Chew, D.M., Magna, T., Kirkland, C.L., Miškovic, A., Cardona, A., Spikings, A. & Schaltegger, U. 2008. Detrital zircon fingerprint of the Proto-Andes: evidence for a Neoproterozoic active margin. Precambrian Research, 167, 186-200.
- Cochrane, R., 2013. U-Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active margin dynamics and implications for the volume balance of continents University of Geneva, Switzerlan, 191 p.
- Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., & Chiaradia, M. 2014. Distinguishing between in-situ and accretionary growth of continents along active margins: Lithos, v. 202–203, p. 382-394.
- Cordani, U. G., Kawashita, K. & Thomaz-Filho, A. 1978. AAPG Studies in Geology, v. 6, p. 93-117.
- Cordani, U. G., Ramos, V. A., Fraga, L. M., Cegarra, M., Delgado, I., de Souza, K. G., Gomes, F. E. M., Schobbenhous, C. 2016. Tectonic Map of South America at 1:5.9 M, CGMW-CPRM-SEGEMAR, 2016
- Faure, G. 1986. Isotopes: Principles and Applications. Second Edition. John Wiley & Sons. 550 p.
- Feininger, T., Barrero, D., Castro, Q. N. 1972. Geologia de parte de los departamentos de Antioquia y Caldas (Sub-zona II-B). Boletín Geológico de Ingeominas, Numero 20 (2). p. 1-173.
- Flórez, J. & Valencia, A. 2006. Cartografía geológica de 137 km² entre los municipios de Santa Fe de Antioquia y Olaya, Departamento de Antioquia, Colombia. Tesis de grado, Universidad Nacional de Colombia, Bogotá, D.C.
- Fujiyoshi, A., Ishizaka, K., Hayase, I., Tokuyama, A. (1976). Metamorphic and igneous rocks from the Medellín–Yarumal–Santa Marta áreas, Colombia and their Rb-Sr ages. Jornal of the Geological Society of Japan, 82 (9). P. 559-563.
- Geraldes M. C. 2010. Introdução á Geocronologia. SBG Sociedade Brasileira de Geologia. 135 p.
- Gómez, A., Moreno, M. & Pardo, A. 1995. Edad y origen de Complejo metasedimentario de Aranzazu-Manizales en los alrededores de Manizales (Departamento de Caldas, Colombia) Geologia Colombiana, v. 19, p. 83 – 93.
- Gómez, J., Montes N. E., Nivia, Á. & Diederix, H., compiladores. 2015. Atlas Geológico de Colombia 2015. Escala 1:500.000. Servicio Geológico Colombiano, 26 planchas. Bogotá.

Gonzalez, H. 1980. Geologia de la plancha 167 (Sonsón), INGEOMINAS, p. 174.

- Gonzalez, H. 2001. Mapa geológico de departamento de Antioquia, Memoria Explicativa, INGEOMINAS
- Gonzáles, H. & Londoño, A.C. 2002. Catálogo de las unidades litoestratigráficas de Colombia, Batólito de Sabanalarga, Cordillera Occidental, departamento de Antioquia. INGEOMINAS. 12p.
- Hall, R., Álvarez, J. & Rico, H. 1972. Geologia de los departamentos de Antioquia y Caldas (Sub zona I-A). Boletín Geológico Ingeominas, 20(1): 1-85.
- Ibáñez-Mejía, M., Jaramillo, J. M. & Valencia, V. A. 2008. U–Th/Pb zircon geochronology by multicollector LA–ICP–MS of the Samaná Gneiss: A Middle Triassic syn–tectonic body in the Central Andes of Colombia, related to the latter stages of Pangea assembly. VI South American Symposium on Isotope Geology. Resúmenes CD ROM, 4 p. San Carlos de Bariloche, Argentina.
- Jones, D. L., Cox, A., Coney, P., & Beck, M. 1982. The growth of western North America. Scientific America 247, 70-84.
- Johnston, S. T. 2008. The cordilleran ribbon continent of North America. Annual Review of Earth and Planetary Sciences. Volume 36, Pages 495-530.
- Kerr, A. C., Marriner, G. F., Tarney, J., Nivia, A. Saunders, A. D., Thirlwall, M. F., & Sinton, C. W. 1997a. Cretaceous basaltic terranes in Western Colombia: elemental, chronological and Sr–Nd Isotopic Constraints on petrogenesis: Journal of Petrology, v. 38, p. 677 – 702.
- Kerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., Klaver, G., & Saunders, A. D. 1997b. The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian: Journal of South American Earth Sciences, v. 9, p. 111 120.
- Le Bas, M. J. & Streckeisen, A. 1991. The IUGS systematics of igneous rocks. Journal of the Geological Society, London. Volume. 148, pp. 825-833.
- Ludwig, K. R. 1980. Calculation of uncertainties of U–Pb isotope data. Earth and Planetary Science Letters 46: 212–220.
- Ludwig, K. R. 2000. Decay constant errors in U–Pb concordia–intercept ages. Chemical Geology 166: 315–318.
- Maya, M. & González, H. 1995. Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico, Ingeominas, 35(2-3): 43-57.
- Montes, C., Guzmán, G., Bayona, G., Cardona, A., Valencia, V. A. & Jaramillo, C. 2010. Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato–San Jorge and Cesar– Ranchería basins. Journal of South American Earth Sciences, 29(4): 832–848.

- Mora-Bohórquez, J. A., Ibánez-Mejía, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., Serna, L. 2017. Structure and age of the Lower Magdalena Valley basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin. Journal of South American Earth Sciences 74 (2017) p 1-26.
- Moreno-Sánchez, M., Gómez-Cruz, A. d. J. & Toro-Toro, L. M. 2008. Proveniencia del material clástico del Complejo Quebradagrande y su relación con los complejos estructurales adyacentes. Boletín de Ciencias de la Tierra, 22: 27-38.
- Nivia A. & Goméz T. 2005. El Gabro Santa Fe de Antioquia y la Cuarzodiorita Sabanalarga, una propuesta de nomenclatura litoestratigráfica para dos cuerpos plutónicos diferentes agrupados previamente como Batólito de Sabanalarga en el Departamento de Antioquia, Colombia.
- Nivia, Á., Marriner, G. F., Kerr, A. C. & Tarney, J. 2006. The Quebradagrande Complex: a Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4): 423-436.
- Noble, S. R., Aspden, J. A. & Jemelita, R. 1997. Northern Andean crustal evolution: New U-Pb geochronological constraints from Ecuador. Geological Society of America Bulletin, 109: 789-798.
- Ordóñez, O. & Pimentel, M. 2001. Consideraciones geocronológicas e Isotópicas del Batólito Antioqueño. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
- Ordóñez, O., Pimentel, M., Laux, J. E. 2008. Edades U-Pb del Batólito Antioqueño. Boletín de Ciencias de la Tierra, Numero 22.
- Pankhurst, R. J., Rapela, C. W., Loske, W. P., Márquez, M., Fanning, C. M. 2003. Chronological study of the pre-Permian basement rocks of southern Patagonia. Journal of South American Earth Sciences, Vol. 16, p. 27-44.
- Pérez, G. 1967. Determinación de la edad absoluta de algunas rocas de Antioquia por métodos radioactivos. Dyna. Numero 84, Universidad Nacional de Colombia. Medellín. p. 27-31.
- Pindell, J., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geological Society of London Special Publication 328, 1–55.
- Restrepo, J. J., Ordoñez-Carmona O., Martens, U., & Correa, A. M. 2009. Terrenos, Complejos y Provincias en la Cordillera Central de Colombia. Congreso Colombiano de Geologia. Paipa-Boyacá.
- Restrepo, J. J., Ordóñez Carmona, O., Armstrong, R. & Pimentel, M. M. 2011. Triassic metamorphism in the northern part of the Tahamí Terrane of the

Central Cordillera of Colombia. Journal of South American Earth Sciences, 32(4): 497–507.

- Restrepo, J. J. & Toussaint, J. F. 1988. Terranes and Continental Accretion in the Colombian Ande. Episodes, 11, 189 193.
- Rodríguez, G., Arango, M.I., & Bermúdez, J.G. 2012. Batólito de Sabanalarga, Plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte. Boletín Ciencias de la Tierra, 32: 81-98.
- Rodríguez G., Gonzáles H., Restrepo J. J., Martens U. & Cardona J. D. 2012. Ocurrence of granulites in the northern part of the Western Cordillera of Colombia. Boletín de Geologia. Universidad Industrial de Santander. Vol. 34, N° 2, julio-diciembre de 2012.
- Rodriguez, G. & Zapata, G. 1995. Exploración de metales base (Cu Pb Zn) y oro en una faja al oeste del Municipio de Ituango, Ingeominas, informe 2186, 49p y anexos. Medellín.
- Rodriguez, G., & Zapata, G. 2013. Comparative analysis of the Barroso Formation and Quebradagrande Complex: a volcanic arc tholeiitic–calcoalcaline, segmented by the fault system Romeral in Northern Andes: Boletin Ciencias de la Tierra, v. 33, p. 39 - 58.
- Ruiz-Jiménez, E. C., Blanco-Quintero, I. F., Toro. L., Moreno-Sánchez, M., Vinasco, C. J., García-Casco, A., Morata, D. & Gomez-Cruz, A. 2012. Geoquímica y petrología de las metabasitas del Complejo Arquía (municipio de Santa Fé de Antioquía y río Arquía, Colombia): Implicaciones geodinámicas.
- Sengör, A. M. C., Natal'in, B. 2004. Ribbon continents: a marginal affair of central importance. Geological Society of America. Abstract Programs, Volume 36, p. 534
- Serrano, L., Ferrari, L., López-Martínez, M., Petrone, C. M., Jaramillo, C. 2011. An integrative geologic, geochronologic and geochemical study of Gorgona Island Colombia: Implications for the formation of the Caribbean Large Igneous Province: Earth and Planetary Science Letters, 309, 324-336.
- Silva, L. C. da. 2006. Geocronologia aplicada ao mapeamento regional, com ênfase a técnica U-Pb SHRIMP e ilustrada com estudos de casos brasileiros / Luiz Carlos da Silva - CPRM - Serviço Geológico do Brasil. (Publicações Especiais do Serviço Geológico do Brasil); Brasília,134 p.
- Soler, P., Bonhomme, M. 1990. Relations of magmatic activity to Plate dynamics in Central Peru from Late Cretaceous to Present. In: S. Kay and C. Rapela (Editors), Plutonism from Antarctica to Alaska. Geol. Soc. Am. Mere., 241:173-191.
- Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., & Beate, B. 2014. The geological history of northwestern South America: from

Pangaea to the early collision of the Caribbean Large Igneous Province (290–75 Ma): Gondwana Research.

- Streckeisen, A. 1974. Classification and nomenclature of plutonic rocks: Recommendations of the IUGS subcommission on the systematics of igneous rocks. Geologische Rundschau – International Journal of Earth Sciences, 63 (2), pp. 773-785, 1974.
- Suter, F., Sartori, M., Neuwerth, R. & Gorin, G., 2008. Structural imprints at the front of the Chocó-Panamá indenter: Fiel data from the North Cauca alley Basin, Central Colombia. Tectonophysics.
- Toussaint, J. F. 1996. Evolución Geológica de Colombia, Cretácico. Universidad Nacional de Colombia. Medellín. 142 p.
- Toussaint, J. F., & Restrepo J. J. 1978. Edad K-Ar de dos rocas básicas del flanco noroccidental de la Cordillera central: Publicaciones especiales de geología, v. 15.
- Valencia-Morales, Y., Toro, L., Ruiz-Jiménez, E., Moreno-Sánchez, M. 2013. Pressure-Temperature path of Arquía Group rocks (NW Colombia): a petrographic analysis from mineral assemblages. Earth Sciences Research Journal, Vol 17, No 2.
- Vaughan, A. P. M. 1995. Circum-Pacific mid-Cretaceous deformation and uplift: A superplume- related event? Geology 23(6): 491-494.
- Villagómez, D., & Spikings, R.. 2013. Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the Northern Andes: Lithos, v. 160–161, p. 228-249.
- Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., Beltrán, A. 2011. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125 pp. 875–896.
- Villaraga, C. 2016. Temporalidad y características geoquímicas del vulcanísmo cretácico del sector norte de la Cordillera Occidental Colombiana: implicaciones tectónicas. Tesis de Maestria, Centro de Investigacion Científica y Educacion Superior de Ensenada, Baja California.
- Vinasco, C.J., & Cordani. U. 2012. Reactivation episodes of the Romeral Fault System in the northwestern part of Central Andes, Colombia, through ³⁹Ar-⁴⁰Ar and K-Ar results. Revista Boletín Ciencias de la Tierra, 32: 111-124.
- Vinasco, C. J., Cordani, U. G., Gonzalez, H., Weber, M. & Pelaez, C., 2006. Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4): 355-371.

- Vinasco, C. J., Weber, M., Cardona, A., Areiza, M., Restrepo, S., Pindell, J., Pardo, A., Toro, L. M., Lara, M., 2011. Geological transect through an accretionary margin, Western Colombia. Field trip September 3-5, 2011, IGCP Project 546 "Subduction zones of the Caribbean", Medellín.
- Viscarret, P., Wright, J. E., Urbani, F. 2009. Nuevas edades U-Pb en circones para el macizo El Baúl, estado Cojedes, Venezuela. Revista Técnica de la Facultad de Ingenieria de la Universidad de Zulia, Volume32, parte 3, pp. 210-221.
- Weber, M., Cardona, A., Valencia, V. A., García Casco, A., Tobón, M. & Zapata, S. 2010. U/Pb detrital zircon provenance from late cretaceous metamorphic units of the Guajira Peninsula, Colombia: Tectonic implications on the collision between the Caribbean arc and the South American margin. Journal of South American Earth Sciences, 29(4): 805–816.
- Weber, M., Gómez-Tapias, J., Duarte, E., Cardona, A., Vinasco-Vallejo, C.J., 2011. Geochemistry of the Santafé Batholith in NW Colombia: Remnant of an accreted Cretaceous arc. Memorias XIV Congreso Latinoanericano de Geología, Medellín, Colombia, pp. 128-129.
- Weber, M., Gómez-Tapias, J., Cardona, A., Duarte, E., Pardo, A., Valencia, V., 2015. Geochemistry of the Santa Fe Batholith and Buriticá Tonalite in NW Colombia -Evidence of subduction initiation beneath the Colombian Caribbean Plateau, Journal of South American Earth Sciences.
- Wedepohl, K. H. 1978. Handbook of Geochemistry, Volume 2, parte 5. Springer-Verlag. Berlin-Heidelberg-New York.
- Wetherill, G. W. 1956. Discordant uranium–lead ages. Transactions of the American Geophysical Union 37: 320–326.
- Zapata, J. P. 2013. Analisis petrográfico, geoquímico y geocronológico de la secuencia de rocas básicas de altamira. Universidad Nacional de Colombia, Sede Medellín.
- Zapata, S. 2015. Pre-collisional extensional tectonics in convergent continental margins: the cretaceous evolution of the central cordillera of the Colombian Andes. Maestría thesis, Universidad Nacional de Colombia Sede Medellín.