As imagens de catodo luminescência revelam um conjunto heterogêneo de zircões, com marcantes diferenças morfológicas e texturais (Figura 43).

Figura 43 – Imagem de catodo luminescência dos zircões analisados da amostra BGM – 101. O *spot* 1A apresentou discordância maior do que 5% e não foi considerado. NC: Não Concordante. **BGM-101 (bloco A)**

Fonte: O autor, 2016.

Não foi possível correlacionar às idades dos zircões com as suas morfologias, porém, observa-se que os *spots* que ocorrem em partes zonadas dos grãos, zonamento este característico de zircões ígneos, apresentaram idades entre 534 e 650 Ma. Já os *spots* feitos em zircões que apresentam zonamentos irregulares apresentaram idades entre 650 e 852 Ma (Figura 44)

Fonte: O autor, 2016.

Os *spots* 7D e 8D foram feitos em um zircão que apresentava um zonamento ígneo e uma borda recristalizada, provavelmente metamórfica. Esses *spots* revelaram uma idade de 534 ± 44 Ma para a borda de recristalização e a idade de 639 ± 26 Ma para seu núcleo magmático.

O conjunto de dados isotópicos U-Pb dos 34 grãos de zircão da amostra BGM-101 mostra idades esparsas do Neoproterozóico ao Cambriano, e uma concentração significativamente maior de valores por volta de 600 Ma (resultados em anexo).

Para construção do diagrama concórdia Wetherill e cálculo de idade selecionou-se as medidas com melhor consistência analítica, representando os *spots* que resultaram em idades individuais entre 600 e 630 Ma. Os dados destes dezesseis spots forneceram uma idade de 616 \pm 3.7 Ma (MSWD = 0.85; Probabilidade de concordância = 0.36. (Figura 45).

Figura 45 – Diagrama concórdia Wetherill indicando a possível idade de cristalização da amostra BGM – 101.

Fonte: O autor, 2016.

6.3.2 Amostra BGM - 06

Essa amostra foi coletada em um dique de Olivina-Gabro, com espessura aproximada de 20 metros. Esse dique apresenta rumo de 345°N e está concordante com a foliação milonítica (075/78) apresentada pela rocha encaixante (biotita-gnaisse).

A partir de análise macroscópica e microscópica foi possível observar que o Gabro apresenta uma granulação grossa, com textura subofítica, e é composto por plagioclásio, ortopiroxênio e olivina como minerais principais e opacos, principalmente magnetita, como minerais acessórios. Além disso, apresenta biotita (metamórfica) substituindo o ortopiroxênio.

As imagens de catodoluminescência (Figura 46) mostram zircões euédricos a subédricos, prismáticos. Nos grãos que se mantiveram inteiros é possível observar uma borda piramidal. No grão onde foram efetuados os *spots* 001B e 002B observa-se um zoneamento oscilatório,

característico de zircões magmáticos. No grão com *spot* 009A esse zonamento encontra-se na borda.

Figura 46 – Imagem de catodo luminescência dos zircões analisados da amostra BGM – 06. Os *spots* 001A, 002A e 004A apresentaram discordância maior do que 5% e não foram considerados. NC: Não Concordante.

Fonte: O autor, 2016.

Os sete *spots* selecionados após redução dos dados, mostram idades não concordantes, variando entre 590 e 801 Ma, não sendo possível a elaboração de um gráfico de concórdia. A figura 47 mostra apenas a distribuição de idade de cada *spot*.

Figura 47: distribuição de idade dos spots efetuados nos zircões da amostra BGM - 06.

Fonte: O autor, 2016.

Trata-se de uma amostra coletada em um dique de diabásio, com 3 metros de espessura aproximadamente e rumo de 340°N. Esse dique apresenta disjunção colunar subhorizontal, feição típica desse tipo de rocha.

As imagens CL mostram zircões jovens subédricos a anédricos. No grão onde foram efetuados os *spots* 004A/005A/006A ocorre um zoneamento oscilatório no centro, característico de zircões magmáticos, mas não é possível observar esse zonamento em suas bordas. (Figura 48)

Figura 48 imagem de catodo luminescência dos zircões analisados da amostra ITAP-01. O *spot* 009A apresentou discordância maior do que 5% e não foi considerado. NC: Não Concordante.

Fonte: O autor, 2016.

Os nove *spots* selecionados após redução dos dados, mostram idades não concordantes, variando entre 599 e 759 Ma, não sendo possível a elaboração de um gráfico de concórdia. A figura 49 mostra apenas a distribuição de idade de cada *spot*.

Figura 49 – Distribuição de idade dos spots efetuados nos zircões da amostra BGM – 36.

Fonte: O autor, 2016.

7 DISCUSSÃO

Em alguns trechos do Lineamento Iúna (LI) o recobrimento por rochas da Formação Barreiras e/ou sedimentos quaternários preenchendo os vales dos rios orientados segundo a direção deste Lineamento dificulta a observação das estruturas desenvolvidas nas rochas que indique a sua origem. Nesses trechos geralmente observam-se estruturas rúpteis, como fraturas e falhas, e presença de diques de gabro / diabásio em áreas mais elevadas nos divisores de água das drenagens ou nas encostas dos vales. Esta dificuldade também é encontrada em estudos de outros lineamentos do Espírito Santo, como o Feixe de Fratura Colatina e o Lineamento Piúma.

Entretanto nas áreas mapeadas no setor A, pode-se observar uma maior densidade de afloramentos a partir destas drenagens, inclusive com lajedos orientados segundo a direção do LI. Com o mapeamento detalhado destas áreas foi possível reconhecer estruturas dúcteis desenvolvidas na direção do LI e a deflecção da foliação principal, gerada durante estágio colisional da evolução da Faixa Araçuaí, originalmente com orientação N-S a NE-SW para direções paralelas a subparalelas a direção do LI, conforme mostram os estereogramas da figura 18. Estas deflexão da foliação principal é observada em uma área até aproximadamente 1km a partir do eixo principal do LI, para NE e SW, e as zonas de cisalhamento dúcteis a dúcteis-rúpteis geradas na direção do LI geralmente apresentam espessuras centimétricas até poucos metros. Desta forma pode-se identificar a presença de ao menos uma fase de deformação dúctil associada ao desenvolvimento do LI, estruturas normalmente não observadas nos demais lineamentos do Espírito Santo.

Estas zonas de cisalhamento foram observadas afetando os orto e paragnaisses das unidades (Clinopiroxênio) hornlenda – biotita – gnaisse e Sillimanita-granada-biotita – xisto/gnaisse, respectivamente, granitóides do Plúton Lajinha do Mutum, Metaquartzo-diorito Iúna e gnaisse porfirítico.

Outra estrutura importante na região é a Zona de Cisalhamento Guaçuí (ZCGu), no Rio Norte, que delimita os setores A e B definidos neste trabalho, apresentando mergulho subvertical para SE e movimento transcorrente destral. Entretanto ao aproximar-se da ZCGu o traçado do LI fica menos evidente nos mapas e imagens de satélite, além disso não é observada deflecção da foliação milonítica da ZCGu para direções do LI como ocorre com a foliação principal (Sn) em áreas ao norte. Em escala de afloramento são observadas estruturas dúcteis e rúpteis na direção do LI, sendo as primeiras representadas por falhas antitéticas com movimentação oblíqua com componente sinistral e normal, semelhante às zonas de cisalhamento desenvolvidas ao longo do LI. Assim, as zonas de cisalhamento sinistrais desenvolvidas ao longo do LI poderiam ter relação semelhante, sendo falhas antitéticas relacionadas ao desenvolvimento da ZCGu. As estruturas rúpteis observadas na junção do LI com a ZCGu são representadas por diversas fraturas subverticais com mergulho tanto para ENE quanto para WSW, que provavelmente representam reativações posteriores na direção do LI.

O granito hololeucocrático datado na pedreira do ponto BGM-101 apresenta foliação milonítica relacionada à zona de cisalhamento dúctil oblíqua sinistral normal com atitude 070° / 70° orientada na direção do LI. Apresentou idade concordante de 616 ± 3.7 Ma interpratada como idade de cristalização do granito. Regionalmente essa idade é correspondente às idades das rochas da Supersuíte G1, pré-colisional. A maioria dos zircões selecionados apresentam um núcleo zonado (ígneo) e uma borda esbranquiçada (metamórfica), discordante da zonação apresentada no resto do grão. Nos zircões que apresentavam essa característica procurou-se analisar o núcleo zonado e a borda metamórfica, porém, por serem bordas muito delgadas, muitas delas ficaram fora do limite de detecção do equipamento utilizado e na maioria das análises não foi possível obter resultados. Apenas em um zircão, onde foram dados os tiros 007D e 008D (Figura 43), foram obtidas idades do núcleo de 639 Ma, herança, e da borda 534 Ma. A idade de 534 Ma é aqui relacionada a um evento metamórfico contemporâneo a milonitização do granito, posterior a foliação principal, que no contexto regional trata-se do período sin a tardi colisional do orógeno Araçuaí em que se formaram as principais zonas de cisalhamento desse orógeno. Esta idade é consistente com o modelo evolutivo apresentado por Teixeira-Silva (2010) que situa a evolução da ZCGu entre 560 e 530 Ma.

Outra questão a ser discutida ao longo deste trabalho é a relação dos plútons da Suíte G5 do orógeno Araçuaí com o Lineamento Iúna. Wiedemann-Leonardos *et alli* (2000) ressaltam que uma das ferramentas mais importantes para o entendimento de como realmente se deu o alojamento dos plútons em uma determinada área é o mapeamento detalhado associado à geocronologia das intrusões. Recentemente vários autores têm reforçado a importância do conhecimento da forma das intrusões ígneas para a compreensão da origem dos granitos.

Uma grande quantidade de corpos granitóides de tipo-I, cálcio-alcalinos de idade Neoproterozóica a Cambriana, ocorre ao longo de todo o domínio interno do Cinturão Araçuaí, continuando pelo Cinturão Ribeira, formando batólitos gnáissicos bastante homogêneos (G1, G3I e G4 de Pedrosa Soares *et alli*, 1999 e Pedrosa Soares *et alli*, 2000). Segundo Wiedemann-Leonardos *et alli* (2000), tais corpos intrudiram em torno de 580 Ma, logo após o pico da colisão e deformação, tendo sofrido as últimas fases de deformação regional (Figura 50).

Após o colapso do orógeno, a crosta teria permanecido aquecida (Söllner *et alli*, 2000) e no período de 560 a 535 Ma teria ocorrido relaxamento tectônico ao longo de toda a Faixa, salvo na região mais ao sul do Espírito Santo. Essa região a partir de 535 até 480 Ma passou por um novo episódio magmático reaquecendo a crosta e ocorrendo a intrusão de diversos complexos ígneos de composições contrastantes (Suíte G5), variando de gabro a granito (Wiedemann-Leonardos, *et alli* 2000).

FONTE: MODIFICADO DE WIEDEMANN-LEONARDOS, ET ALLI 2000.

Legenda: (1) rochas graníticas, (2) núcleos máficos, ambos da Suíte **G5**, (3) ortognaisses da suíte **G1**, (4) rochas granulíticas das Serras do Caparaó, Valentim e complexo Costeiro, (5) grupo Rio Doce e complexo Paraíba do Sul, gnaisses de fácies anfibolito alto, (6) trend da foliação, (7) eixo de sinclinal, (8) eixo de anticlinal, (9) cidade.

A erosão associado a um relevo escarpado no sul do Espírito Santo expõem corpos afunilados, com raízes cilíndricas sub-verticais, gradando, em níveis mais rasos, a planos de fluxo de menor ângulo de mergulho (Wiedemann-Leonardos, et alli 2000). Segundo esses autores, nas seções horizontais as formas são elípticas, ameboides e circulares. Para Wiedemann-Leonardos et alli (2000) stocks, sills e diques dúcteis, de composição bimodal, associados aos plútons, intrudem as rochas encaixantes ao longo de zonas de cisalhamento dúctil, da foliação metamórfica ou de eixos de estruturas antiformais. O contato com as rochas encaixantes é brusco nos plútons mais profundos, como é o caso dos plútons Santa Angélica, que é cortado pelo Lineamento Iúna, Venda Nova e Várzea Alegre.

As raízes dos plútons não são orientadas aleatoriamente em relação ao campo de estresse. Em todos os casos, o número de raízes e da distribuição delas dentro do campo de estresse regional enfatiza o papel ativo da deformação durante a subida do magma e seu alojamento (Pitcher, 1979). Geometricamente, duas situações extremas são observadas: a menos frequente corresponde ao alinhamento das raízes com o maior componente de estresse (sigma 1); e mais comum, os *trends* das raízes em um alto ângulo com sigma 1 e alinhados com a extensão (Vigneresse, 1995). Para este autor, essa geometria indica uma deformação plástica da crosta (Figura 51).

Legenda: A = extensão; B = falha direcional de escala regional (*wrench fault*); C = fratura aberta entre sobreposição de zonas de cisalhamento.

Wiedemann-Leonardos *et alli* (2000) propuseram um modelo evolutivo para as intrusões da suíte G5 na região sul do Espírito Santo (Figura 52), segundo o qual essas intrusões foram geradas da seguinte forma: 1) subida de cunhas de magmas astenosféricos quentes, provavelmente relacionado à delaminação crustal, após a colisão, no final ou colapso da orogenia, por zonas de cisalhamento profundas de direção NE-SW; 2) indução da fusão parcial crustal que produziu magmas graníticos e monzoníticos; 3) interação entre esses magmas contrastantes, originando canais bimodais de magma; 4) alojamento dos plútons compostos ao longo de caminhos regionais tais como eixos de dobras e zonas de cisalhamento dúcteis, durante uma fase distensiva da orogenia. Para esses autores, as diferenças composicionais mapeadas podem ser explicadas por diferenças nos níveis de interação entre os magmas, nos processos de diferenciação durante a ascensão, no processo de alojamento e nos níveis de erosão.

Figura 52 – Modelo final de cunhas mantélicas, injetadas ao longo das zonas de cisalhamento dúctil regionais, induzindo fusão parcial da crosta, produção contemporânea de magmas graníticos que são canalizados para os plútons compostos em níveis mais rasos.

Fonte: MODIFICADA DE WIEDEMANN-LEONARDOS ET ALLI 2000.

O Maciço Santa Angélica (MSA) é um exemplo clássico dos corpos da Suíte G5 e é cortado ao meio pelo Lineamento Iúna (Figura 53). Conforme descrito no capitulo 6 este maciço tem forma elíptica 1:2 com eixo maior na direção ENE e menor na direção NNW, possui dois núcleos gabroicos separados pelo LI e tem diferentes litotipos orientados na direção NNW, semelhante a do LI. Ao longo do LI, fora dos domínios do Maciço Santa Angélica, foram observados diques de gabro de espessura até 20m, com mineralogia e textura

semelhante aos dos núcleos gabroicos do MSA, com orientação NNW. Estas características associadas a trabalhos de Acocella *et alli* (2002) e Bellahsen & Daniel (2001) apresentados no capitulo 5 (Revisão de Conceitos), sugerem que a ascensão do magma que originou este maciço pode ter ocorrido ao longo de estruturas preexistentes, semelhante ao descrito por Wiedemann-Leonardos *et alli* (2000), entretanto estruturas NNW-SSE, orientação do LI. Entretanto esta hipótese ainda necessita de estudos mais aprofundados tanto em relação a idades dos diferentes litotipos, quanto a estruturas neles registradas.

Figura 53 – Recorte do Mapa Geológico do Estado do Espírito Santo, escala 1:400.000, mostrando a relação entre o Lineamento Iúna e a intrusão do Maciço Santa Angélica.

Fonte: MODIFICADO DE VIEIRA ET ALLI, 2014.

Outro plúton granítico de menor dimensão, aproximadamente 1,5km de diâmetro, ocorre em Jerônimo Monteiro, a sul do Maciço Santa Angélica, e apresenta estruturas planares definidas pela orientação de fenocristais de feldspato, interpretadas como fluxo ígneo com rumo semelhante ao LI. Este plúton é cortado por vários vales profundos na direção do LI, ao longo dos quais foram observados litotipos graníticos hololeucocráticos orientados na mesma direção. Este plúton foi identificado neste trabalho e também necessita de estudo detalhado para verificar a hipótese de ascensão do magma que o originou ao longo do LI.

Diques de diabásio foram mapeados ao longo de todo Lineamento Iúna, principalmente nos setores A e B, inclusive cortando gabro do núcleo do Maciço Santa Angélica. Nos trabalhos de campo pode-se observar contatos intrusivos do diabásio no gabro, mostrando que esses diques podem estar relacionados a um ou mais eventos de reativações do LI. Segundo Belém (2014) os diques de diabásio encontrados no Feixe de Fratura Colatina estão relacionadas ao evento de magmatismo pós-colisional, com idade U-Pb variando entre 498 ± 16 Ma e 525 ± 10 Ma. Porém, em trabalhos anteriores esses diques tinham apresentado idades K-Ar e Ar-Ar do Cretáceo e Jurássico (Silva *et alli* 1983; Novaes *et alli* 2004). Para Belém (2014) essas idades mesozoicas teriam sido resultado de um desequilíbrio do sistema isotópico, provavelmente causado por um evento termal em torno de 135 Ma.

As amostras do gabro e do diabásio datados nesse trabalho apresentaram idades entre 590 e 801 Ma. Considerando que a principal fase deformacional do Orógeno Araçuaí ocorreu próximo a 580Ma e que estas rochas não apresentam registros de foliação semelhante às encaixantes, estas idades não são condizentes com a cristalização destes corpos, sendo interpretadas como zircões herdados de rochas encaixantes. Se os diques encontrados no Lineamento Iúna estiverem no mesmo contexto dos diques do Feixe de Fratura Colatina, então esse Lineamento passou por pelo menos dois eventos de reativação, a fase de colapso do orógeno Araçuaí e a abertura do Atlântico Sul.

Por fim, os dados levantados no Setor C da área de estudo e trabalhos realizados nesta região (Ribeiro, 2010; Rodrigues, 2015) mostram falhas e fraturas em afloramentos da Formação Barreiras próximos ao Lineamento Iúna com direções preferenciais NW-SE e drenagens nessa mesma direção. Isso sugere que durante o Cenozoico pode ter ocorrido outras reativações ao longo do Lineamento Iúna.

Na área continental o LI termina na região de São Francisco do Itabapoana, com a costa seguindo sua direção até altura do Cabo de São Tomé. A avaliação da hipótese de continuidade do LI para a plataforma continental, com possibilidade de controle estrutural em áreas produtoras de petróleo não pode ser investigada por falta de dados referentes à área da plataforma, entretanto este é um dos principais pontos a ser abordado por trabalhos futuros.

8 CONSIDERAÇÕES FINAIS

O Lineamento Iúna teria a sua origem relacionada à fase tardi-colisional do orógeno Araçuaí, a qual teria também gerado as zonas de cisalhamento transcorrentes destrais de direção NE, como a Zona de Cisalhamento Guaçuí. Segundo o modelo da tectônica de "quebra-nozes" proposto por Alkmim *et alli* (2007), a colisão das margens opostas da bacia Macaúbas promoveria a propagação de frentes de empurrão para as zonas cratônicas, bem como o soerguimento da cadeia montanhosa no intervalo compreendido entre 580 e 560 Ma. Segundo esses autores, a parte central do orógeno é secionada por, pelo menos, quatro grandes zonas transcorrentes destrais (Abre Campo, Manhuaçu, Guaçuí e Batatal) que se formaram em estágio posterior à propagação das frentes de empurrão em direção aos crátons, provavelmente no intervalo entre 560 e 535 Ma. A evolução dessas zonas de cisalhamento destrais teriam gerado zonas de cisalhamento sinistrais (Figura 54), que em imagem de satélite são representadas por um grande lineamento, batizado nessa dissertação de Lineamento Iúna.

O Lineamento Iúna foi reativado em pelo menos mais quatro eventos. Na primeira reativação ocorreu ascensão de magmas bimodais na fase de colapso gravitacional do orógeno Araçuaí. Posteriormente, reativações rúpteis relacionadas à abertura do oceano Atlântico geraram falhas e fraturas na direção do Lineamento, ao longo das quais houve ascensão de magma básico formando diques de diabásio. Essas fases de reativação foram observadas nos setores A e B da área em estudo, setores em que predominam rochas ígneas e metamórficas. No setor C foram observadas falhas e fraturas NNW-SSE e NW-SE ao longo do Lineamento Iúna nas rochas da Formação Barreiras e em cascalheiras quaternárias, indicando no mínimo mais dois eventos neotectônicos relacionados às reativações deste Lineamento.

Assim, a feição linear observada em mapas topográficos e imagens de satélite, aqui denominada de Lineamento Iúna, representa a junção de diversas estruturas, dúcteis e rúpteis, geradas em momentos diferentes, ao menos desde o final do Neoproterozóico até o Quaternário, com ascensão de magmas de composição básica até ácida, e não apenas estruturas rúpteis atribuídas originalmente à quebra do Gondwana e abertura do Oceano Atlântico, como descritas em trabalhos anteriores para os lineamentos do Espírito Santo.

Em trabalhos futuros pretende-se datar mais amostras de granitos, gabros e dos diques de diabásio mapeados no Lineamento Iúna utilizando-se de diversas metodologias, além do U-Pb, os métodos do Lu-Hf, K-Ar e Ar-Ar, para se chegar a resultados cada vez mais significativos. Além disso, pretende-se avançar no mapeamento das áreas ao longo do Lineamento, principalmente através de trabalhos de pesquisa realizados com alunos da Universidade de Vila Velha.

Fonte: O autor, 2016.

REFERÊNCIAS

Acocella, V., Korme, T., 2002. Holocene extension direction in the axial zone of the main Ethiopian Rift. Terra Nova, 14, 191–197.

Acocella, V., Korme, T., Salvini, F., Funiciello, R., 2002. Elliptic calderas in the Ethiopian Rift: control of pre-existing structures. J. Volc. Geoth. Res., 119, 189-203.

Alkmim F.F., Pedrosa-Soares A.C., Noce C.M., Cruz S.C.P. 2007. Sobre a Evolução Tectônica do Orógeno Araçuaí-Congo Ocidental. *Geonomos*, 15(1):25-43.

Almeida F.F.M. 1977. O Cráton do São Francisco. Rev. Bras. Geoc., 7(4):349-364.

Archanjo, C.J., Oliver, P., Bouchez, J.L. 1992. Plutons Granitiques du Serido (Nordeste du Brésil): Ecoulement Magmatique Parallèle à la Chaine Releve Par Leur Anisotropie Magnétique. Bull. Soc. Geól. Fr., 163: 509 – 520.

Bayer P., Schmidt-Thomé R., Weber-Diefenbach K., Horn H. A. 1987. Complex concentric granitoid intrusions in the coastal mobile belt, Espírito Santo, Brazil: the Santa Angélica Pluton – an example. Geologische Rundschau, .76/2:357-371.

Belém, J.; Dussin, I. A.; Pedrosa-Soares, A. C.; Alkmim, F. F.; Roncato, J. 2013. A idade Cambriana do feixe de fratura Colatina (ES) e suas implicações na tectônica de bacias brasileiras. Simpósio Nacional de Estudos Tectônicos, Chapada dos Guimarães (MT).

Belém, J. 2014. Geoquímica, geocronologia e contexto geotectônico do magmatismo máfico associado ao Feixe de Fraturas Colatina, estado do Espírito Santo. Tese de Doutorado, UFMG, 134p.

Bellahsen, N., Daniel, L., 2001. Reactivation of a pre-existing normal faults network in extension: an experimental study. Proceedings of XXVI EGS Assembly, Nice, France, p. 54.

Bizzi, L. A.; Schobbenhaus, C.; Vidotti, R. M.; Gonçalves, J. H. (eds.). 2003. Geologia, Tectônica e Recursos Minerais do Brasil: Texto, Mapas e SIG. Brasília: CPRM, 4 CD-ROM.

Bricalli, L.L.; Mello, C.L. 2013. Padrões de lineamentos relacionados à litoestrutura e ao fraturamento neotectônico (Estado do Espírito Santo, SE do Brasil). Revista Brasileira de Geomorfologia, v. 14, n°3.

Bronzoni, L.C. 2011. Caracterização estrutural do Lineamento Piúma e sua influência na porção norte da Bacia de Campos. Trabalho de conclusão do curso de Geologia, UNESP, 89p.

Calegari, S. S. Controle estrutural na evolução tectônica da porção central da Bacia de Campos e área continental adjacente, Sudeste do Brasil. Brasília: Instituto de Geociências, Universidade de Brasília, 2015, 78 p. Dissertação de Mestrado.

Campos C.M., Mendes J.C., Ludka I.P., Medeiros S.R., Moura J.C., Wallfass C. 2004. A review of the Brasiliano magmatism in southern Espírito Santo, Brazil, with emphasis on post-collisional magmatism. *Journal of the Virtual Explorer*, **17**: 1-35. Collettini, C., Sibson, R.H., 2001. Normal faults, normal friction? Geology 29, 927-930.

Clemens J. D. 1998. Observations on the origins and ascent mechanisms of granitic magmas. J. Geological Soc. London, 155:843-851.

Clemens J. D., Mawer C. K. 1992. Granitic magma transport by fracture propagation. Tectonophysics, 204:339-360.

Cunningham, D., 2013. Mountain building processes in intracontinental oblique deformation belts: lessons from the Gobi Corridor, Central Asia. J. Struct. Geol. 46, 255-282.

Cunningham D., Alkmim F.F., Marshak S. 1998. A structural transect across the coastal mobile belt in the Brazilian Highland (latitude 20°S). *Precramb. Res.*, 92: 251-275.

Domenica, A., Petricca, P., Trippetta, F., Carminati, E., Calamita, F., 2014. Investigating fault reactivation during multiple tectonic inversions through mechanical and numerical modeling: An application to the Central-Northern Apennines of Italy. J. Struc. Geol. 67, 167-185.

Fonseca, M. J. G.; Mendes, J. C.; Silva, Z. C. G.; Moura, J.C. 2012. Zona de sutura e organização do Orógeno Ribeira Setentrional. Revista Brasileira de Geociências, 42(4): 812-823.

Gudmundsson, A., 1998. Magma chambers modeled as cavities explain the formation of rift zone central volcanoes and their eruption and intrusion statistics. J. Geophys. Res. 103, 7401-7412.

Gudmundsson, A., 2011. Rock Fractures in Geological Processes. Cambridge University Press, p. 592

Hanmer, S., Vigneresse, J.L. 1980. Mise en Place de Diapirs Syntectoniques Dans la Chaine Hercynienne, Exemple des Massifs Leucogranitiques de Locronan et de Pontivy. Bull. Soc. Geól. Fr., 22: 193 – 202.

Henza, A.A., Withjack, M.O., Schlische, R.W., 2010. Normal-fault development during two phases of non-coaxial extension: an experimental study. J. Struct. Geol. 32, 1656-1667.

Henza, A.A., Withjack, M.O., Schlische, R.W., 2011. How do the properties of a preexisting normal-fault population influence fault development during a subsequent phase of extension? J. Struct. Geol. 33, 1312-1324.

Hollister, L.S., Crawford, M.L. 1986. Melt-Enhanced Deformation: a Major Tectonic Process. Geology, 14: 558-561.

Horn, A.H. 1998. Lajinha, uma intrusão Tardi-Orogênica e Póscolisional no extremo Oeste do Complexo Paraíba do Sul, Minas Gerais-Espírito Santo, Brasil. Geonomos V.6 (1): 25-37.

Horn, A.H. 2006. Geologia da folha Espera Feliz SE.24-V-A-IV., 63 p., il. mapas. Escala 1:100.000. Programa Geologia do Brasil. Convênio CPRM/ UFMG. Brasília: CPRM; Belo Horizonte: UFMG.

Hutton, D.H.W., Dempster, T.J., Brown, P.E., Decker, S.D. 1990. A New Mechanism of Granite Emplacement: Intrusion in Active Extensional Shear Zones. Nature, 343: 452 – 455.

Johannesson, H., Saemundsson, K., 1998. Geological Map of Iceland. Tectonics. Scale 1:500 000. Iceland Institute of Natural History, Reykjavik.

Jordan, G.; Schott, B. 2005. Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case of study. Remote Sensing of Environment, 94. p. 31-38.

Júnior, C., Fossen, H., Jackson, C., 2015. Geometry and distribution of intra-basement lineaments in the eastern Suez rift; their controls on the structural style of the oligo-miocene rift. XV Simpósio Nacional de Estudos Tectônicos (SNET). 618-621. Vitória-ES.

Korme, T., 1999. Lithologic and structural mapping of the northeast Lake Ziway area, Ethiopian Rift, with the help of Landsat TM data. Sinet Ethiop. J. Sci. 22, 151-174.

Lourenço, F.S., 2015. O Lineamento Piúma: características gerais e história evolutiva no cenário das províncias Mantiqueira Setentrional e Margem Continental. Dissertação de Mestrado. UFOP.

Magee, C., McDermott, K., Stevenson, C., Jackson, C., 2014. Influence of crystallised igneous intrusions on fault nucleation and reactivation during continental extension. Journal of Structural Geology. 62. 183-193.

Marshak S., Alkmim F.F., Whittington A., Pedrosa-Soares A.C. 2006. Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: A setting for reactivation of asymmetric crenulation cleavage. *Journal Structural Geology*, 28: 129-147.

Martins V.T.S., Teixeira W., Noce C.M., Pedrosa-Soares A.C. 2004. Sr and Nd characteristics of Brasiliano-Pan African granitoid plutons of the Araçuaí orogen, southeastern Brazil: Tectonic implications. *Gondwana Research*, **7**: 75-89.

Mollier, J.L. 1982. Structuration Magmatique du Complexe Granitique de Brame-Saint-Sylvestre-Saint-Goussaud (Limousin, Massif Central Français). C.R. Acad. Sci. Paris, Ser. 2, 294: 1329 – 1333.

Morais, R. M. O., Mello, C. L., Costa, F. O., Ribeiro, C. S. 2005. Estudos faciológicos de depósitos terciários (formações Barreiras e Rio Doce) aflorantes na porção emersa da bacia do Espírito Santo e na região emersa adjacente à porção norte da bacia de Campos. In: Congresso da Associação Brasileira de Estudos do Quaternário, Guarapari. ABEQUA, 1 Cd-Rom.

Morais, R. M. O., Mello, C. L., Costa, F. O., Santos, P. F. 2006. Fácies sedimentares e ambientes deposicionais associados aos depósitos da Formação Barreiras no estado do Rio de Janeiro. Geologia USP (Série Científica), São Paulo, v. 6, n. 2, p. 19-30.

Morais, R. M. O. 2007. Sistemas fluviais terciários na área emersa da bacia do Espírito Santo (formações Barreiras e Rio Doce). 2007. 144 p. Tese (Doutorado em Geologia) - Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Nalini Jr, H.A., Machado, R., Endo, I., Bilal, E. 2008. A importância da tectônica transcorrente no alojamento de granitos pré a sincolisionais na região do vale do médio Rio

Doce: o exemplo das suítes graníticas Galiléia e Urucum. Revista Brasileira de Geociências, 38(4): 741 – 752.

Noce, C.M., Pedrosa-Soares, A.C., Silva, L.C., Alkmim, F.F. 2007. O Embasamento Arqueano e Paleoproterozóico do Orógeno Araçuaí. Geonomos, 15: 17-23.

Novais, L.C.C., Teixeira, L.B., Neves, M.T., Rodarte, J.B.M., Almeida, J.C.H., Valeriano, C.M. 2004. Novas ocorrências de diques de diabásio na faixa Colatina-ES: estruturas rúpteis associadas e implicações tectônicas para as bacias de Campos e do Espírito Santo. Bol. de Geoc. Petrobras. 12(1):191-194.

Oliveira, D. B.; Moreno, R.S.; Miranda, D. J.; Ribeiro, C. S.; Seoane, J. C. S.; Mello, C. L. 2009. Elaboração de um mapa de lineamento estrutural e densidade de lineamento através de imagem SRTM, em uma área ao norte do rio Doce, ES. In: XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal. Anais eletrônicos. Natal: INPE, p. 4157-4163.

Pace, P., Di Domenica, A., Calamita, F., 2014. Summit low-angle faults in the Central Apennines of Italy: younger-on-older thrusts or rotated normal faults? Constraints for defining the tectonic style of thrust.

Park, R.G. & Jaroszewski, W. 1994. Craton Tectonics, Sress and Seismicity. In: P.L. Hancock (ed.) *Continental Deformation*. Pergamon Press, England, 200-222.

Pedrosa-Soares A. C., Wiedemann C. M., Fernandes M. L. S., Faria L. F., Ferreira J. C. H. 1999. Geotectonic significance of the Neoproterozoic granitic magmatism in the Araçuaí belt, Eastern Brazil: a model and pertinent questions. Rev. Bras. Geoc., 29(1):57-64.

Pedrosa-Soares, A.C. & Wiedemann-Leonardos, C.M. 2000. Evolution of the Araçuaí Belt and its connection to the Ribeira Belt, Eastern Brazil. *In*: U. Cordani, E. Milani, A. Thomaz-Filho & D. A. Campos (eds), *Tectonic Evolution of South America*. São Paulo, Sociedade Brasileira de Geologia, p. 265-285.

Pedrosa-Soares, A.C., Noce, C.M., Wiedemann, C.M., Pinto, C.P. 2001. The Araçuaí–West Congo orogen in Brazil: An overview of a confined orogen formed during Gondwanland assembly. *Precambrian Research*, 110: 307-323.

Pedrosa-Soares, A.C.; Castañeda, C.; Queiroga, G.; Gradim, C.; Belém, J.; Roncato, J.; Novo, T.; Dias, P.; Gradim, D.; Medeiros, S.; Jacobsohn, T.; Babinski, M.; Vieira, V. 2006. Magmatismo e Tectônica do Orógeno Araçuaí no Extremo Leste de Minas e Norte do Espírito Santo (18°-19°S, 41°-40°30'W). Geonomos 14(1,2): 97 – 111.

Pedrosa-Soares, A.C., Noce, C.M., Alkmim, F.F., Silva, L.C., Babinski, C.M., Cordani, U., Castañeda, C. 2007. Orógeno Araçuaí: síntese do conhecimento 30 anos após Almeida 1977. Geonomos 15(1): 1 – 16.

Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M.A. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West-Congo orogen. *Geological Society, London, Special Publications*, 294: 153-172 Pedrosa-Soares A. C., Campos C., Noce C.M., Silva L.C., Roncato J., Novo T., Medeiros S., Castañeda C., Queiroga G., Dantas E., Dussin I., Alkmim F.F. 2011. Late Neoproterozoic-Cambrian granitic magmatism in the Araçuaí Orogen, the Eastern Brazilian Pegmatite Province and related mineral resources (SE Brazil). *Geological Society*, 350:25-51.

Petford N., Lister J. R., Kerr R. C. 1994. The ascent of felsic magmas in dykes. Lithos, 32:161-168.

Pitcher, W.S. 1979. The Nature Ascend End Emplacement of Granitic Magmas. Journal Geol. Soc. London, 136: 627 – 662.

Projeto RadamBrasil, 1983. Volume 34, folhas SF 23 e SF 24, Rio de Janeiro - Vitória, 544 p.

Ribeiro, C. S. 2010. Influência da tectônica pós-deposicional na distribuição da Formação Barreiras entre o rio Paraíba do Sul (RJ) e o rio Doce (ES). Dissertação de Mestrado, Universidade Federal do Rio de Janeiro (UFRJ), 163p.

Rodrigues, L. O. M. 2015. Análise de lineamentos e de dados estruturais neotectônicos na região norte-fluminense, entre os rios Paraíba do Sul e Itabapoana. Trabalho de conclusão do curso de Geologia, Universidade Federal do Rio de Janeiro (UFRJ), 65p.

Silva, C.M.A., Gomes, J.B, Caldeira, S.M.B. 1987. Geologia da região de Ribeirão da Folha, município de Minas Novas, MG (área central). Trabalho de Graduação. UFMG, 71p.

Silva, L.C., McNaughton, N.J., Armstrong, R., Hartmann, L. & Fletcher, I. 2005. The Neoproterozoic Mantiqueira Province and its African connections. *Precambrian Research*, 136: 203-240.

Söllner F., Lammerer B., Wiedemann C. M. 2000. Dating the Ribeira Mobile Belt of Brazil. In: SONDERHEFT-Zeitschrift für Angewandte Geologie. Hannover/2000, 245-255.

Tedeschi, M. 2013. Caracterização do Arco Magmático do Orógeno Araçuaí entre Frei Inocêncio e Itambacuri, MG. Dissertação de Mestrado, Universidade Federal de Minas Gerais (UFMG), 162p.

Texeira, L.B., Rodarte, J.B.M. 2003. Datações de diques de diabásios na faixa Colatina. Rio de Janeiro: PETROBRAS. CENPES. PDEXP. MB, Relatório Interno. 58p.

Teixeira-Silva C.M., 2010. O sistema transcorrente da porção sudoeste do orógeno Araçuaí e norte da faixa Ribeira: geometria e significado tectônico. Tese de doutoramento. UFOP. 221p.

Valente, S. C.; Dutra, T.; Heilbron, M.; Corval, A.; Szatmari, P. 2009. Litogeoquímica de Diques de Diabásio da Faixa Colatina. Geochimica Brasiliensis, 23(2) 177-192.

Vasseur, G., Dupis, A., Gallart, J., Robin, G. 1990. Données Géophysiques sur la Structure du Massif Leucogranitique du Limousin. Bull. Soc. Géol. Fr., 8(6): 3 – 11.

Vieira V.S, Silva M.A., Corrêa T.R., Lopes N.H.B. 2014. Mapa geológico do Espírito Santo. Escala 1:400.000. Programa Integração, geologia e recursos minerais do estado do Espírito Santo. Belo Horizonte. CPRM.

Vigneresse, J.L. 1995. Control of Granite Emplacement by Regional Deformation. Tectonophysics 249: 173 – 186.

Walsh, J., Childs, C., Meyer, V., Manzocchi, T., Imber, J., Nicol, A., Tuckwell, G., Bailey, W., Bonson, C., Watterson, J., Nell, P., Strand, J., 2001. Geometric controls on the evolution of normal fault systems. In: Holdsworth, R.E., Strachan, R., Magloughlin, J., Knipe, R. (Eds.). The Nature and Tectonic Significance of Fault Zone Weakening, vol. 186. Geol. Society of London. Special Publication, 157-170.

Weinberg R. F. 1999. Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos, 46:394-410.

Weinberg R. F., Podladchikov Y. 1994. Diapiric ascent of magmas through power-law crust and mantle. J. Geophys. Res., .99:9543-9559.

Wiedemann-Leonardos, C.M., Ludka, I.P., Medeiros, S.R., Mendes, J.C., Costa-de-Moura, J. 2000. Arquitetura de plútons zonados da faixa Araçuaí – Ribeira. Geonomos 8(1): 25-38.

Zanon, M.L., Chaves, A.O., Rangel, C.V.G.T., Gaburo, G., Pires, C.R. 2015. Os aspectos geológicos do Maciço Santa Angélica (ES): uma nova abordagem. Brazilian Journal of Geology, 45(4): 609 – 633.

Zhang, Y., Underschultz, J.R., Gartrell, A., Dewhurst, D.N., Langhi, L., 2011. Effects of regional fluid pressure gradients on strain localisation and fluid flow during extensional fault reactivation. Mar. Petrol. Geol. 28, 1703-1713.

ANEXO A: Dados Geocronológicos

									Isotope ratiosc						Ages (Ma)				
Spot number		Pb	Th	U		207Pb/	1 s	206Pb/	1 s		207Pb/	1 s	2.06Pb/	1 s	207Pb/	1 s	207Pb/	1 s	%
	f 206a	ppm	ppm	ppm	Th/Ub	235U	[%]	238U	[%]	Rhod	206Pbe	[%]	238U	abs	235U	abs	206Pb	abs	Concf
BGM 101/001A	0.0062	15	59	112	0.53	1.0167	4.69	0.1242	4.10	0.87	0.0594	2.28	755	31	712	33	580	13	130
BGM 101/ 002A	0.0016	50	186	427	0.44	0.8676	2.49	0.1033	1.91	0.77	0.0609	1.59	634	12	634	16	636	10	100
BGM 101/003A	0.0056	10	38	80	0.47	0.8016	5.96	0.0978	4.97	0.83	0.0595	3.29	601	30	598	36	584	19	103
BGM 101/004A	0.0052	9	37	80	0.47	0.8807	4.36	0.1058	3.47	0.80	0.0604	2.65	648	22	641	28	617	16	105
BGM 101/005A	0.0021	40	144	349	0.41	0.8309	3.04	0.0994	2.51	0.83	0.0606	1.72	611	15	614	19	626	11	98
BGM 101/006A	0.0034	5	26	40	0.65	0.8509	6.02	0.1020	3.65	0.61	0.0605	4.79	626	23	625	38	621	30	101
BGM 101/007A	0.0086	13	56	114	0.49	0.9480	2.21	0.1124	1.72	0.78	0.0612	1.40	687	12	677	15	646	9	106
BGM 101/008A	0.0050	37	156	319	0.49	0.9840	6.40	0.1147	5.44	0.85	0.0622	3.36	700	38	696	45	682	23	103
BGM 101/009A	0.0036	18	40	149	0.27	0.8788	3.50	0.1055	2.99	0.86	0.0604	1.82	646	19	640	22	619	11	105
BGM 101/ 001B	0.0016	36	65	320	0.20	0.9478	1.49	0.1114	1.17	0.79	0.0617	0.92	681	8	677	10	665	6	102
BGM 101/002B	0.0030	39	329	282	1.17	0.9627	5.06	0.1134	4.91	0.97	0.0616	1.23	693	34	685	35	659	8	105
BGM 101/003B	0.0040	19	70	168	0.42	0.8919	5.71	0.1063	5.30	0.93	0.0608	2.12	651	35	647	37	634	13	103
BGM 101/004B	0.0046	6	34	54	0.63	0.8354	5.07	0.1015	2.82	0.56	0.0597	4.21	623	18	617	31	593	25	105
BGM 101/005B	0.0030	18	24	174	0.14	0.8399	3.98	0.1004	3.77	0.95	0.0607	1.28	617	23	619	25	628	8	98
BGM 101/006B	0.0019	108	501	985	0.51	0.9417	5.45	0.1101	5.34	0.98	0.0620	1.06	673	36	674	37	676	7	100
BGM 101/007B	0.0018	41	112	372	0.30	0.8703	2.46	0.1036	2.05	0.83	0.0610	1.36	635	13	636	16	638	9	100
BGM 101/008B	0.0044	12	63	96	0.66	0.8676	2.40	0.1049	1.97	0.82	0.0600	1.37	643	13	634	15	604	8	106
BGM 101/009B	0.0023	44	36	435	0.08	0.8326	2.20	0.0996	1.84	0.83	0.0607	1.22	612	11	615	14	627	8	98
BGM 101/001C	0.0048	13	64	109	0.59	0.8249	2.42	0.0995	1.92	0.79	0.0601	1.47	611	12	611	15	609	9	100
BGM 101/002C	0.0043	12	61	98	0.62	0.9345	3.93	0.1095	2.98	0.76	0.0619	2.56	670	20	670	26	670	17	100
BGM 101/003C	0.0033	35	111	301	0.37	0.9163	2.67	0.1079	2.33	0.87	0.0616	1.30	661	15	660	18	659	9	100
BGM 101/004C	0.0050	7	33	62	0.52	0.8268	4.81	0.0996	3.65	0.76	0.0602	3.14	612	22	612	29	611	19	100
BGM 101/005C	0.0041	20	63	182	0.35	0.8660	2.15	0.1032	1.62	0.75	0.0609	1.42	633	10	633	14	634	9	100
BGM 101/006C	0.0057	9	54	78	0.70	0.9825	5.31	0.1142	4.66	0.88	0.0624	2.54	697	33	695	37	688	17	101

BGM 101/007C	0.0024	35	45	348	0.13	0.8162	4.38	0.0983	3.36	0.77	0.0602	2.81	604	20	606	27	611	17	99
BGM 101/008C	0.0044	9	48	86	0.56	0.7929	5.89	0.0964	5.48	0.93	0.0596	2.15	593	33	593	35	591	13	100
BGM 101/009C	0.0040	3	12	25	0.49	0.8571	4.76	0.1024	3.93	0.83	0.0607	2.68	628	25	629	30	629	17	100
BGM 101/001D	0.0045	24	105	201	0.52	0.8388	2.01	0.1002	1.62	0.81	0.0607	1.19	616	10	618	12	628	7	98
BGM 101/002D	0.0052	14	64	114	0.56	0.8774	3.06	0.1044	2.28	0.74	0.0609	2.04	640	15	640	20	637	13	100
BGM 101/003D	0.0057	10	54	80	0.67	0.8563	3.34	0.1024	2.55	0.76	0.0607	2.15	628	16	628	21	627	14	100
BGM 101/ 004D	0.0060	6	23	44	0.51	0.9145	3.47	0.1083	2.82	0.81	0.0612	2.02	663	19	659	23	647	13	102
BGM 101/005D	0.0034	24	85	193	0.44	0.8216	2.86	0.0980	2.44	0.85	0.0608	1.49	603	15	609	17	632	9	95
BGM 101/006D	0.0023	28	118	245	0.48	0.8843	6.01	0.1043	5.81	0.97	0.0615	1.55	640	37	643	39	656	10	98
BGM 101/007D	0.0050	13	73	98	0.74	0.8755	2.87	0.1042	2.29	0.80	0.0609	1.73	639	15	639	18	637	11	100
BGM 101/008D	0.0047	16	36	172	0.21	0.6832	6.51	0.0850	6.36	0.98	0.0583	1.38	526	33	529	34	541	7	97
BGM 101/009D	0.0025	40	96	385	0.25	0.9076	6.88	0.1070	6.77	0.99	0.0615	1.18	655	44	656	45	657	8	100
BGM 101/001E	0.0038	27	121	224	0.54	0.9032	2.53	0.1058	2.30	0.91	0.0619	1.07	648	15	653	17	671	7	97
BGM 101/002E	0.0046	16	57	141	0.41	0.8452	3.27	0.1003	2.69	0.82	0.0611	1.85	616	17	622	20	644	12	96
BGM 101/003E	0.0033	139	402	1321	0.30	1.3162	6.89	0.1416	6.56	0.95	0.0674	2.12	854	56	853	59	850	18	100
BGM 101/004E	0.0045	21	98	178	0.55	0.8463	4.92	0.1014	4.67	0.95	0.0605	1.56	623	29	623	31	623	10	100
BGM 101/005E	0.0035	23	146	183	0.80	0.8835	2.45	0.1042	2.22	0.90	0.0615	1.04	639	14	643	16	657	7	97
BGM 101/006E	0.0045	54	147	469	0.31	0.9628	5.51	0.1127	5.42	0.98	0.0619	0.98	689	37	685	38	672	7	102
BGM 101/007E	0.0024	52	223	422	0.53	0.9590	2.47	0.1118	2.23	0.90	0.0622	1.06	683	15	683	17	681	7	100
BGM 101/008E	0.0053	20	87	171	0.51	0.9940	2.89	0.1140	2.32	0.80	0.0632	1.74	696	16	701	20	716	12	97
BGM 101/009E	0.0049	11	82	87	0.95	0.8278	3.49	0.0996	3.08	0.88	0.0603	1.64	612	19	612	21	614	10	100
BMG 06/001 A	0.0034	37	45	111	0.41	4.8268	8.00	0.2659	6.88	0.86	0.1317	4.08	1520	105	1790	143	2120	87	72
BMG 06/002 A	0.0043	48	59	159	0.37	5.3113	19.13	0.3164	17.74	0.93	0.1218	7.17	1772	314	1871	358	1982	142	89
BMG 06/003 A	0.0039	4	20	33	0.60	0.9091	5.53	0.1070	3.99	0.72	0.0616	3.82	655	26	657	36	661	25	99
BMG 06/004 A	0.0210	26	27	272	0.10	1.0215	10.93	0.0937	8.73	0.80	0.0791	6.57	577	50	715	78	1174	77	49
BMG 06/005 A	0.0064	18	134	182	0.74	0.8648	6.95	0.1040	6.84	0.98	0.0603	1.21	638	44	633	44	614	7	104
BMG 06/ 006 A	0.0022	39	141	385	0.37	0.8921	3.76	0.1069	3.08	0.82	0.0605	2.17	655	20	647	24	622	13	105
BMG 06/007 A	0.0040	19	78	134	0.58	0.8687	5.80	0.1036	5.46	0.94	0.0608	1.97	635	35	635	37	633	12	100
BMG 06/008 A	0.0049	10	49	82	0.59	0.7858	5.69	0.0963	4.62	0.81	0.0592	3.32	593	27	589	33	573	19	103
BMG 06/ 009 A	0.2661	7	15	65	0.23	0.9281	6.70	0.1092	4.98	0.74	0.0617	4.49	668	33	667	45	662	30	101

BMG 06/ 001 B	0.0025	23	38	190	0.20	1.2002	6.85	0.1322	6.64	0.97	0.0659	1.68	800	53	801	55	802	13	100
BMG 06/ 002 B	0.0065	18	26	137	0.19	1.0623	6.31	0.1208	5.40	0.86	0.0638	3.25	735	40	735	46	734	24	100
BGM - 36/ 001 A	0.03385	19	28	168	0.17	1.0020	5.20	0.116	4.50	0.87	0.0629	2.61	705	32	705	37	705	18	100
BGM - 36/ 002 A	0.01335	25	120	190	0.63	1.1093	5.35	0.126	4.50	0.84	0.0638	2.90	765	34	758	41	736	21	104
BGM - 36/ 003 A	0.01949	21	86	163	0.53	1.0474	2.52	0.119	1.84	0.73	0.0638	1.73	725	13	728	18	736	13	99
BGM - 36/004 A	0.003822	32	226	239	0.95	0.8441	3.78	0.101	3.24	0.86	0.0607	1.94	619	20	621	23	630	12	98
BGM - 36/ 005 A	0.005846	24	150	175	0.86	0.8986	5.98	0.106	3.53	0.59	0.0614	4.83	651	23	651	39	652	32	100
BGM - 36/ 006 A	0.004412	22	155	165	0.94	0.8036	6.81	0.097	6.24	0.92	0.0598	2.72	599	37	599	41	598	16	100
BGM - 36/007 A	0.005293	23	308	130	2.37	0.8685	3.97	0.105	3.11	0.78	0.0603	2.47	641	20	635	25	613	15	105
BGM - 36/008 A	0.003835	23	251	146	1.71	0.8631	3.72	0.104	3.23	0.87	0.0601	1.86	639	21	632	24	607	11	105
BGM - 36/009 A	0.012253	10	91	70	1.30	0.7963	6.04	0.102	5.26	0.87	0.0565	2.98	627	33	595	36	473	14	133

ANEXO B: Tabela de Pontos

ID	N	E	Altitude	Carta IBGE (1:50.000)
BGM – 01	7773930	213910	514	Lajinha
BGM – 02	7781112	217066	436	Lajinha
BGM – 03	7781504	218046	393	Lajinha
BGM – 04	7780175	219663	391	Lajinha
BGM – 05	7778583	220196	394	Lajinha
BGM – 06	7777263	221102	398	Lajinha
BGM – 07	7775871	221686	434	Lajinha
BGM – 08	7776806	221033	417	Lajinha
BGM – 09	7774943	222457	438	Lajinha
BGM – 10	7773953	223021	437	Lajinha
BGM – 11	7771237	224959	571	Lajinha
BGM – 12	7767521	226350	572	Lajinha
BGM – 13	7767216	226849	605	Lajinha
BGM – 14	7760027	230779	680	Lajinha
BGM – 15	7747870	235192	656	lúna
BGM – 16	7748368	234955	657	lúna
BGM – 17	7754867	232838	670	lúna
BGM – 18	7757151	231300	682	lúna
BGM – 19	7755818	232137	687	lúna
BGM – 20	7756421	233642	688	lúna
BGM – 21	7755736	232545	676	lúna
BGM – 22	7752326	233839	692	lúna
BGM – 23	7747926	237006	676	lúna
BGM – 24	7747335	237855	712	lúna
BGM – 25	7746878	236756	662	lúna
BGM – 26	7746173	236855	659	lúna
BGM – 27	7745019	237967	639	lúna
BGM – 28	7743774	237689	643	lúna
BGM - 28B	7743676	237672	644	lúna
BGM – 29	7742556	237724	634	lúna
BGM – 30	7736000	241528	622	Muniz Freire
BGM – 31	7735031	242003	397	Muniz Freire
BGM – 32	7722685	244004	481	Anutiba
BGM – 33	7722201	244157	486	Anutiba
BGM – 34	7717480	246772	441	Anutiba
BGM – 35	7701626	250882	110	Muqui
BGM – 36	7702688	251729	104	Muqui
BGM – 37	7710721	249291	348	Anutiba
BGM – 38	7698825	252407	298	Muqui
BGM – 39	7672194	268070	240	Presidente Kennedy
BGM – 40	7670258	268614	40	Presidente Kennedy
BGM - 41	7661999	263353	68	Mimoso do Sul
BGM – 42	7635639	257543	85	Presidente Kennedy
BGM – 43	7675291	277006	31	Presidente Kennedy
BGM – 44	7671023	276645	47	Presidente Kennedy
BGM – 45	7670724	277201	50	Presidente Kennedy
BGM – 46	7670987	279905	43	Presidente Kennedy
BGM – 47	7669952	280190	62	Presidente Kennedy
BGM – 48	7665159	282522	56	Presidente Kennedy
BGM – 49	7665053	278132	60	Presidente Kennedy
BGM – 50	7664776	277618	78	Presidente Kennedy

BGM – 51	7664192	275313	57	Presidente Kennedy
BGM – 52	7664408	274683	56	Presidente Kennedy
BGM – 53	7664385	274310	34	Presidente Kennedy
BGM – 54	7665256	273885	35	Presidente Kennedy
BGM – 55	7668362	269163	43	Presidente Kennedy
BGM – 56	7668113	270166	30	Presidente Kennedy
BGM – 57	7666244	272881	57	Presidente Kennedy
BGM – 58	7666449	273627	36	Presidente Kennedy
BGM – 59	7668250	276768	50	Presidente Kennedy
BGM – 60	7666072	277811	64	Presidente Kennedv
BGM – 61	7656216	283414	19	Presidente Kennedv
BGM – 62	7653849	283793	26	Presidente Kennedy
BGM – 63	7642288	273867	46	Barra Sêca
BGM – 64	7779940	222094	438	Laiinha
BGM – 65	7780652	223307	540	Laiinha
BGM - 66	7780100	224306	525	Lajinha
BGM – 67	7779629	223982	511	Lajinha
BGM – 68	7778537	224224	588	Laiinha
BGM – 69	7778388	223799	650	Laiinha
BGM – 70	7777856	223516	641	Lajinha
BGM – 71	7777815	223411	611	Lajinha
BGM – 72	7777562	223364	566	Lajinha
BGM – 73	7777407	223147	560	Lajinha
BGM – 74	7777357	222262	484	Lajinha
BGM – 75	7778039	221460	444	Lajinha
BGM - 76	7779996	222972	483	Lajinha
BGM - 77	7779651	219877	382	Lajinha
BGM - 78	7779372	219007	422	Lajinha
BGM – 79	7778937	219899	387	Laiinha
BGM - 80	7779121	219486	415	Laiinha
BGM – 81	7778286	218715	441	Laiinha
BGM – 82	7776759	218337	564	Laiinha
BGM – 83	7775689	219638	566	Laiinha
BGM – 84	7775309	220327	528	Laiinha
BGM – 85	7774407	220031	459	Laiinha
BGM – 86	7774333	220073	458	Laiinha
BGM – 87	7774218	219430	523	Laiinha
BGM – 88	7773845	219131	538	Laiinha
BGM – 89	7775429	221006	435	Laiinha
BGM – 90	7775739	221629	429	Lajinha
BGM – 91	7776444	220774	446	Lajinha
BGM – 92	7776173	220139	488	Lajinha
BGM – 93	7776745	220978	400	Lajinha
BGM – 94	7778266	219976	406	Lajinha
BGM – 95	7777145	219439	515	Lajinha
BGM – 96	7775744	223493	497	Lajinha
BGM – 97	7776593	224026	558	Lajinha
BGM – 98	7747988	232057	667	lúna
BGM – 99	7748307	232545	677	lúna
BGM – 100	7748399	234030	684	lúna
BGM – 101	7748477	234206	728	lúna
BGM – 102	7749204	234467	674	lúna
BGM – 103	7749950	233191	658	lúna
BGM – 104	7749975	232238	721	lúna
BGM – 105	7759744	235139	673	lúna
BGM – 106	7747457	235393	663	lúna

BGM – 107	7747218	235399	658	lúna
BGM – 108	7746012	235532	676	lúna
BGM – 109	7745637	236177	668	lúna
BGM – 110	7746875	235150	669	lúna
BGM – 111	7744819	235190	664	lúna
BGM – 112	7744998	234293	682	lúna
BGM – 113	7744760	233137	695	lúna
BGM – 114	7745443	233132	704	lúna
BGM – 115	7745280	234274	671	lúna
BGM – 116	7745335	234913	657	lúna
BGM – 117	7745340	236234	669	lúna
BGM – 118	7735465	241399	479	lúna
BGM – 119	7735881	241253	584	Muniz Freire
BGM – 120	7735489	241253	569	Muniz Freire
BGM – 121	7751350	232796	674	lúna
BGM – 122	7750163	230250	735	lúna
BGM – 123	7748826	231815	695	lúna
BGM – 124	7750221	232213	760	lúna
BGM - 125	7747244	233232	728	lúna
BGM - 126	7747572	233009	694	lúna
BGM - 127	7747886	232635	682	lúna
BGM - 128	7747326	233210	721	lúna
BGM - 129	7748617	234007	686	lúna
BGM - 130	7747734	231881	698	lúna
BGM - 131	7745238	232715	769	lúna
BGM - 132	7745407	232846	719	lúna
BGM - 133	7744817	233522	686	lúna
BGM – 134	7744100	234474	671	lúna
BGM – 135	7744107	232734	709	lúna
BGM – 136	7747120	235078	667	lúna
BGM – 137	7747229	234927	688	lúna
BGM – 138	7746904	235198	673	lúna
BGM – 139	7746943	234758	695	lúna
BGM – 140	7746408	234609	693	lúna
BGM – 141	7744366	236858	690	lúna
BGM – 142	7744640	235402	650	lúna
BGM – 143	7744141	235902	683	lúna
BGM – 144	7746398	238168	682	lúna
BGM – 145	7748472	238553	693	lúna
BGM – 146	7747877	236416	677	lúna
BGM – 147	7748674	237026	681	lúna
BGM – 148	7749735	235755	699	lúna
BGM – 149	7749660	236402	744	lúna
BGM – 150	7744582	237752	640	lúna
BGM – 151	7745210	238842	703	lúna
BGM – 152	7744123	238054	732	lúna
BGM – 153	7744512	237567	671	lúna
BGM – 154	7767588	226033	505	Lajinha
BGM – 155	7766598	225940		Lajinha
BGM – 155	7766501	225874	527	Lajinha
BGM – 156	7765828	224214	548	Lajinha
BGM – 157	7768430	222437	575	Lajinha
BGM – 158	7769151	223338	544	Lajinha
BGM – 159	7769911	223166	544	Lajinha
BGM – 160	7770284	222998	535	Lajinha
BGM – 161	7768506	227013	512	Lajinha

BGM – 162	7768276	227988	549	Lajinha
BGM – 163	7768036	227940	524	Lajinha
BGM – 164	7769284	226715	538	Lajinha
BGM – 165	7769323	227682	588	Lajinha
BGM – 166	7771580	227109	584	Lajinha
BGM – 167	7771105	226437	597	Lajinha
BGM – 168	7771275	226240	569	Lajinha
BGM – 169	7770563	226901	580	Lajinha
BGM – 170	7768620	225087	495	Lajinha
BGM – 171	7768908	225200	492	Lajinha
BGM – 172	7769198	225392	505	Lajinha
BGM – 173	7772105	220686	673	Lajinha
BGM – 174	7771618	222593	593	Lajinha
BGM – 175	7769932	222182	515	Lajinha
BGM – 176	7770042	223902	514	Lajinha
BGM – 177	7769279	224779	506	Lajinha
BGM – 178	7768235	223415	559	Lajinha
BGM – 179	7772981	220021	497	Lajinha
BGM – 180	7774253	221488	642	Lajinha
BGM – 181	7669871	256330	93	Mimoso do Sul
BGM – 182	7684797	259701	224	Muqui
BGM – 183	7687887	264993	159	Muqui
BGM – 184	7696795	254469	183	Muqui
BGM – 185	7695101	256015	305	Muqui
BGM – 186	7693389	257945	200	Muqui
BGM – 187	7693479	260299	158	Muqui
BGM – 188	7696938	263886	130	Muqui
BGM – 189	7694327	263051	171	Muqui
BGM – 190	7694103	265123	182	Muqui
BGM – 191	7688766	259559	272	Muqui
BGM – 192	7691356	260297	282	Muqui
BGM – 193	7699352	252556	120	Muqui
BGM – 194	7685774	254744	457	Muqui
BGM – 195	7686267	254490	357	Muqui
BGM – 196	7686738	254367	288	Muqui
BGM – 197	7699144	254921	138	Muqui
BGM – 198	7701321	253828	116	Muqui
BGM – 199	7711371	246879	580	Anutiba
BGM – 200	7698575	254074	121	Muqui
BGM – 201	7699034	254223	151	Muqui
BGM – 202	7699345	254070	143	Muqui
BGM – 203	7695982	253914	171	Muqui
BGM – 204	7695171	252974	128	Muqui
BGM – 205	7694578	253942	161	Muqui
BGM – 206	7694814	254315	152	Muqui
BGM – 207	7690327	254028	167	Muqui
BGM – 208	7714240	241876	208	Anutiba
BGM – 209	7720607	245335	271	Anutiba
BGM – 210	7720972	246256	387	Anutiba
BGM – 211	7721074	245357	273	Anutiba
BGM – 212	7721248	244268	410	Anutiba
BGM – 213	7726685	244793	466	Anutiba
BGM – 214	7729062	243977	494	Anutiba
BGM – 215	7728577	242708	466	Anutiba
BGM – 216	7729349	242537	390	Anutiba
BGM – 217	7730198	241453	429	Anutiba

BGM – 218	7731246	240874	373	Anutiba
BGM – 219	7766509	227305	653	Lajinha
BGM – 220	7769985	225309	489	Lajinha
BGM – 221	7769509	225478	532	Lajinha
BGM – 222	7774272	223011	437	Lajinha
BGM – 223	7771069	219710	890	Lajinha
BGM – 224	7770093	223976	496	Lajinha
BGM – 225	7771645	224276		Lajinha
BGM – 226	7768399	221718	569	Lajinha
BGM – 227	7768411	223688	542	Lajinha
BGM – 228	7746200	233816	722	lúna
BGM – 229	7746708	233413	740	lúna
BGM – 230	7746188	233508	731	lúna
BGM – 231	7746953	232776	718	lúna
BGM – 232	7746672	238122	660	lúna
BGM – 233	7747340	238380	679	lúna
BGM – 234	7747627	238179		lúna
BGM – 235	7747975	238068	683	lúna
BGM – 236	7748020	237699	732	lúna
BGM – 237	7749528	236626	701	lúna
BGM – 238	7748792	237020	674	lúna

ANEXO C: Mapa de Pontos

ANEXO F: Mapa Geológico (escala 1:25.000) - Lajinha

Dique de Diabásio

Dique de Gabro

TRAGO DA FOLIAÇÃO PRINCIPAL (5~)

M TRAÇO DA FOLIAÇÃO MILONÍTICA (Sm+1) TRAGO DE FOLIAÇÃO DE FLOXO JENED

Foliação Milonítica (Sn+1)

Plano de Falha Normal ×70

Zona de cisalhamento de Empurrão

4 Indicação de Movimento

ANEXO H: Mapa Geológico (escala 1:25.000) - Iúna

