

Universidade do Estado do Rio de Janeiro

Centro de Tecnologia e Ciências Faculdade de Geologia

Igor Araujo Pessoa

Análises de isótopos de chumbo em conchas de bivalves através da técnica LA-ICP-MS

Rio de Janeiro

Igor Araujo Pessoa

Análises de isótopos de chumbo em conchas de bivalves através da técnica LA-ICP-MS

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis, da Universidade do Estado do Rio de Janeiro. Área de concentração: Análises de Bacias.

Orientadora: Prof.^a Dra. Luzia Antonioli Coorientador: Prof. Dr. Marcos Antonio dos Santos Fernandez

> Rio de Janeiro 2016

CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/C

P475	Pessoa, Igor Araújo. Análises de isótopos de chumbo em conchas de bivalves através da técnica LA-ICP-MS / Igor Araújo Pessoa. – 2016. 205f.: il.
	Orientadora: Luzia Antonioli. Coorientador: Marcos Antonio dos Santos Fernandez. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Geologia. Bibliografia.
	1. Metais pesados – Grande, Ilha, Baía da (RJ) – Teses. 2. Geoquímica – Grande, Ilha, Baía da (RJ) – Teses. 3. Chumbo – Isótopos – Teses. 4. Bivalve (Molusco) – Grande, Ilha, Baía da (RJ) – Teses. I. Antonioli, Luzia. II. Fernandez, Marcos Antonio dos Santos. III. Universidade do Estado do Rio de Janeiro. Faculdade de Geologia. IV. Título.
	CDU 550.43:639.411(815.3)

Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada a fonte.

Assinatura

Data

Igor Araujo Pessoa

Análises de isótopos de chumbo em conchas de bivalves através da técnica LA-ICP-MS

Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis, da Universidade do Estado do Rio de Janeiro. Área de concentração: Análises de bacias

Aprovada em 31 de maio de 2016.

Banca Examinadora:

Prof.^a Dra. Luzia Antonioli (Orientadora) Faculdade de Geologia - UERJ

Prof.^a Dra. Sonia Barbosa dos Santos Instituto de Biologia Roberto Alcântara Gomes - UERJ

Prof. Dr. Miguel Tupinambá Faculdade de Geologia - UERJ

> Rio de Janeiro 2016

DEDICATÓRIA

A Vera Lucia, minha mãe, a verdadeira luz.

AGRADECIMENTOS

Foi um prazer participar do Programa de Pós-graduação em Análises de Bacias e Faixas Móveis oferecidos pela Faculdade de Geologia da UERJ. Gostaria de agradecer principalmente o professor Mauro Geraldes por me incluir no grupo de pesquisa e apoiar o desenvolvimento deste trabalho.

A vida não é um problema para ser resolvido, pelo contrário é para ser uma realidade experimentada.

Søren kierkegaard

Notamos apenas aquilo que pensamos e/ou imaginamos, portanto, as nossas percepções são altamente seletivas.

Allan Watts

A forma mais elevada de inteligência humana é a capacidade de observar sem julgar. Jiddu krishnamurti

RESUMO

PESSOA, Igor Araujo. **Análises de isótopos de chumbo em conchas de bivalves através da técnica LA-ICP-MS.** 2016. 206f. Dissertação (Mestrado em Geologia) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2016.

A análise dos elementos químicos contidos no interior das conchas de bivalves é capaz de revelar as mudanças que ocorrem no ambiente, uma vez que os elementos são provenientes da água onde os animais vivem. Os metais presentes na água são transferidos e acumulados na concha através dos processos metabólicos. A deposição da concha ocorre a partir de uma matriz orgânica onde são sintetizados dois tipos de cristais de carbonatos de cálcio (calcita e aragonita). Os metais ficam armazenados no interior da concha, mesmo após a morte dos animais, quando são preservadas da ação do intemperismo. Vários estudos analisaram a presença de chumbo em bivalves, já foram utilizados no monitoramento de poluentes e no controle da qualidade da água. No entanto, não existe nenhum estudo relacionado a investigação da composição isotópica de chumbo no interior das conchas. Sendo assim, esse trabalho é pioneiro, e teve como objetivo: caracterizar as assinaturas isotópicas de chumbo no interior das conchas, através da técnica LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). Para isso, foi necessário o desenvolvimento do método analítico proposto; o instrumento utilizado foi o espectrômetro de massa Neptune (ThermoFisher Scientific) com plasma acoplado e comprimento de onda do laser de 193nm. 13 espécies de conchas de bivalves foram utilizadas, ao todo 25 conchas foram analisadas, provenientes da Baía da Ilha Grande, Rio de Janeiro. Os resultados revelaram a presença de distintas assinaturas isotópicas de chumbo no interior das conchas. Esses dados estão de acordo com resultados pretéritos de outros estudos, os quais analisaram assinaturas de chumbo nos sedimentos superficiais da mesma região geográfica. As diferentes assinaturas isotópicas registradas nas conchas foram atribuídas a presença de diversas fontes antropogênicas que atuam na região. Observou-se também uma alta variabilidade da concentração de chumbo entre as amostragens, inclusive entre as distintas camadas de uma mesma concha. A variação na concentração de chumbo observada no interior das conchas foi associada a diversos fatores, entre eles: aos processos biológicos e metabólicos, as condições ambientais, distintos tempo de exposição ao poluente e as distintas doses inaladas pelos organismos, e ao modo de vida pertinente a cada espécie. Estes fatores possuem papéis fundamentais na incorporação do chumbo. A camada externa das conchas apresenta um padrão de crescimento caracterizado pela presença de linhas de crescimento impressas na superfície da concha, tal padrão pode ser facilmente correlacionado com o tempo de vida do animal (caso sejam mensuradas em durante o desenvolvimento da concha), assim, a análise de poluentes é mais interessante na camada externa do que nas outras camadas. De maneira geral, este estudo revelou algumas dificuldades inerentes à utilização de conchas de bivalves como registros ambientais. Devido as variáveis listadas acima não é uma tarefa fácil relacionar as concentrações encontradas no interior das conchas dos bivalves com os níveis reais de contaminação no ambiente. Por outro lado, comprovou-se que é possível realizar a análise de isótopos de chumbo em conchas bivalves utilizando a técnica LA-ICP-MS, a interpretação das assinaturas de chumbo pode ajudar na caracterização das fontes de chumbo atuantes em estudos ambientais.

Palavras-chave: Conchas de bivalves. Isótopos de chumbo. LA-ICP-MS

ABSTRACT

PESSOA, Igor Araujo Pessoa. Analysis of lead isotopes in bivalve shells by LA-ICP-MS. 2016. 206f. Dissertação (Mestrado em Geologia) – Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2016.

Bivalve mollusks are able to accumulate chemical elements from ambient water inside their shells, in this way, they have the potential to be good proxy indicators of environmental changes. Substantial amounts of metals can be stored inside the shells through metabolic processes. Shell's deposition occurs through an organic matrix where is synthesized two types of calcium carbonates (calcite and aragonite), the metals fixed in the crystalline structure can remain inside the shell even after the depth of the animals. Several studies have used bivalve in chemical monitoring (identification and quantification of pollutants) and biomonitoring (estimation of environmental quality). Some have analyzed the presence of lead in shells, however, there are no studies addressing the isotopic composition of lead inside bivalve shells. Therefore, this is a pioneer study in literature, the objective of this study is to determine lead isotope composition in order to investigate lead signatures in the shells. In addition, it was also required develop the proposed analytical methodology. The analyzes were performed in the MULTILAB Laboratory of the University of Rio de Janeiro State (UERJ), using a Neptune mass spectrometer (ThermoFisher Scientific) with coupled plasma and Laser (Photo193nm). At total 25 shells from Ilha Grande Bay, Rio de Janeiro State (Brazil), were used as samples. The results reveled different kinds of lead signatures inside the shells due the presence of anthropogenic lead sources acting in the area. Those results are coherent with data reported in another study, which analyzed lead signatures in sediments from the same geographic area. Different amounts of lead concentrations were observed between the samples, even so between the layers from the same shell. The variation of lead concentration inside the shells were associated with several factors, such as: biological processes, environmental conditions, distinct pollutants sources and exposition time. These factors play key roles in lead incorporation by the animals. Grow lines pattern (printed in the outer shell surface) can be easily correlated with different periods of the animals life (if the lines were measured through the time during the grow of the shell). In this way, the pollution events can be correlated with the age of the animals, therefore, the analyses of lead concentrations in the outer layer looks more interesting than the inner layer. Overall, this study revealed some difficulties inherent in the use of bivalve shells as environmental records tools. Because of the variables listed above looks not easy to link metal concentrations in bivalves shells with the contamination levels in the environment. In other hand, this work prove that is possible to perform analysis of lead isotopes in bivalve shells using the LA-ICP-MS technique, which can be used to have insights about lead pollution sources recorded in shells as a perspective tool for environmental studies.

Keywords: Bivalve shells. lead isotopes. LA-ICP-MS

LISTAS DE FIGURAS

Figura 1 –	Mapa de localização da Baía da Ilha Grande
Figura 2 –	Esquema do decaimento do ²³⁸ U, ²³⁵ U e ²³² Th
Figura 3 –	Modo de vida dos bivalves
Figura 4 –	Feições morfológicas da concha de um bivalve
Figura 5 –	Esquema ilustrativo: corte transversal da extremidade da concha de
	um bivalve expondo as partes internas do animal
Figura 6 –	Esquema ilustrativo do corte transversal ao eixo central da concha
Figura 7 –	Esquema ilustrativo: corte transversal da extremidade da concha de
	um bivalve expondo as partes internas do animal
Figura 8 –	Sequência de deposição da camada interna da concha de um bivalve
Figura 9 –	Características pertinentes as conchas dos bivalves
Figura 10 –	Esquema ilustrativo das camadas compositoras das conchas de
	bivalves
Figura 11 –	Esquema ilustrativo do crescimento da concha de bivalves
Figura 12 –	Esquema ilustrativo das microestruturas minerais presente nas
	conchas de bivalves
Figura 13 –	Microestruturas minerais em conchas de bivalves
Figura 14 –	Ilustração da estrutura prismática (camada externa)
Figura 15 –	Mapa com os pontos de coleta
Figura 16 –	Exemplos de algumas conchas analisadas
Figura 17 –	Anadara brasiliana
Figura 18 –	Glycymeris undata
Figura 19 –	Trachycardium muricatum
Figura 20 –	Semele purpurascens
Figura 21 –	Tellina petitiana
Figura 22 –	Mactra janeiroensis
Figura 23 –	Chione paphia
Figura 24 –	Tivela mactroides
Figura 25 –	Pitar fulminatus

Figura 26 –	Pitar circinatus	48
Figura 27 –	Cyclinella tenuis	48
Figura 28 –	Felaniella vilardeboeana	49
Figura 29 –	Corbula cubiniana	49
Figura 30 –	Etapas para montagem do molde	50
Figura 31 –	LA-ICP-MS	50
Figura 32 –	Esquema ilustrativo dos componentes do sistema LA-ICP-MS	52
Figura 33 –	Esquema ilustrativo da planilha "Branket"	55
Figura 34 –	Comportamento do sinal durante aquisição dos dados: Concha (2),	
	Ponto 05A	58
Figura 35 –	Comportamento do sinal medidos no padrão (NIST 612) durante a	
	analise do Perfil (A) – Concha (2)	60
Figura 36 –	Desenho esquemático da concha de Glycymeris undata e as duas	
	camadas	64
Figura 37 –	Localização dos perfis e crateras na concha (1)	64
Figura 38 –	Assinaturas isotópicas registradas na concha (1)	65
Figura 39 –	Contagem por segundo dos isótopos de chumbo: concha (1)	66
Figura 40 –	Localização dos perfis e crateras na concha (2)	68
Figura 41 –	Assinaturas isotópicas registradas na concha (2)	69
Figura 42 –	Contagem por segundo dos isótopos de chumbo: concha (2)	69
Figura 43 –	Desenho esquemático ilustrando a concha de Pitar fulminatus e as três	
	camadas	71
Figura 44 –	Localização dos perfis e das crateras concha (3)	72
Figura 45 –	Assinaturas isotópicas registradas na concha (3)	73
Figura 46 –	Contagem por segundo dos isótopos de chumbo: concha (3)	74
Figura 47 –	Localização dos perfis e das crateras na concha (4)	76
Figura 48 –	Assinaturas isotópicas registradas na concha (4)	77
Figura 49 –	Contagem por segundos dos isótopos de chumbo: concha (4)	78
Figura 50 –	Localização dos perfis e das crateras na concha (5)	80
Figura 51 –	Assinaturas isotópicas registradas na concha (5)	81
Figura 52 –	Contagem por segundo dos isótopos de chumbo: concha (5)	82
Figura 53 –	Desenho esquemático ilustrando a concha de Cyclinella tennuis e as	

	duas camadas	84
Figura 54 –	Localização dos perfis e das crateras na concha (6)	84
Figura 55 –	Assinaturas isotópicas registradas na concha (6)	85
Figura 56 –	Contagem por segundo dos isótopos de chumbo: concha (6)	86
Figura 57 –	Localização dos perfis e das crateras na concha (7)	88
Figura 58 –	Assinaturas isotópicas registradas na concha (7)	89
Figura 59 –	Contagem por segundo dos isótopos de chumbo: concha (7)	90
Figura 60 –	Desenho esquemático ilustrando a concha de Corbula cubaniana e as	
	duas camadas	92
Figura 61 –	Localização dos perfis e das crateras na concha (8)	92
Figura 62 –	Assinaturas isotópicas registradas na concha (8)	93
Figura 63 –	Contagem por segundo dos isótopos de chumbo: concha (8)	94
Figura 64 –	Localização dos perfis e das crateras na concha (9)	96
Figura 65 –	Assinaturas isotópicas registradas na concha (9)	97
Figura 66 –	Contagem por segundo dos isótopos de chumbo: concha (9)	98
Figura 67 –	Localização dos perfis e das crateras na concha (10)	100
Figura 68 –	Assinaturas isotópicas registradas na concha (10)	101
Figura 69 –	Contagem por segundo dos isótopos de chumbo: concha (10)	102
Figura 70 –	Contagem por segundo dos isótopos de chumbo: concha (10)	104
Figura 71 –	Localização dos perfis e das crateras na concha (11)	104
Figura 72 –	Assinaturas isotópicas registradas na concha (11)	105
Figura 73 –	Contagem por segundo dos isótopos de chumbo: concha (11)	106
Figura 74 –	Localização dos perfis e das crateras na concha (12)	108
Figura 75 –	Assinaturas isotópicas registradas na concha (12)	108
Figura 76 –	Contagem por segundo dos isótopos de chumbo: concha (12)	109
Figura 77 –	Desenho esquemático ilustrando a concha de Trachycardium	
	muricatum e as duas camadas	111
Figura 78 –	Localização dos perfis e das crateras na concha (13)	111
Figura 79 –	Assinaturas isotópicas registradas na concha (13)	112
Figura 80 –	Contagem por segundo dos isótopos de chumbo: concha (13)	113
Figura 81 –	Localização dos perfis e das crateras na concha (14)	115
Figura 82 –	Assinaturas isotópicas registradas na concha (14)	115

Figura 83 –	Contagem por segundo dos isótopos de chumbo: concha (14)	116
Figura 84 –	Desenho esquemático ilustrando a concha de Felaniella vilardeboana	
	e as três camadas	118
Figura 85 –	Localização dos perfis e das crateras na concha (15)	118
Figura 86 –	Assinaturas isotópicas registradas na concha (15)	119
Figura 87 –	Contagem por segundo dos isótopos de chumbo: concha (15)	120
Figura 88 –	Localização dos perfis e das crateras na concha (16)	122
Figura 89 –	Assinaturas isotópicas registradas na concha (16)	123
Figura 90 –	Contagem por segundo dos isótopos de chumbo: concha (16)	124
Figura 91 –	Desenho esquemático ilustrando a concha de Anadara brasiliana e as	
	duas camadas	125
Figura 92 –	Localização dos perfis e das crateras na concha (17)	125
Figura 93 –	Assinaturas isotópicas registradas na concha (17)	127
Figura 94 –	Contagem por segundo dos isótopos de chumbo: concha (17)	128
Figura 95 –	Desenho esquemático ilustrando a concha de Chione paphia e as três	
	camadas	130
Figura 96 –	Localização dos perfis e das crateras na concha (18)	131
Figura 97 –	Assinaturas isotópicas registradas na concha (18)	132
Figura 98 –	Contagem por segundo dos isótopos de chumbo: concha (18)	133
Figura 99 –	Localização dos perfis e das crateras na concha (19)	135
Figura 100 –	Assinaturas isotópicas registradas na concha (19)	136
Figura 101 –	Contagem por segundos dos isótopos de chumbo: concha (19)	137
Figura 102 –	Localização dos perfis e das crateras na concha (20)	139
Figura 103 –	Assinaturas isotópicas registradas na concha (20)	139
Figura 104 –	Contagem por segundo dos isótopos de chumbo: concha (20)	140
Figura 105 –	Desenho esquemático ilustrando a concha de Mactra janeiroensis e as	
	2 camadas	142
Figura 106 –	Localização dos perfis e das crateras na concha (21)	142
Figura 107 –	Assinaturas isotópicas registradas na concha (21)	143
Figura 108 –	Contagem por segundo dos isótopos de chumbo: concha (21)	144
Figura 109 –	Desenho esquemático ilustrando a concha de Tivela mactroides e as	
	três camadas	146

Figura 110 –	Localização dos perfis e das crateras na concha (22)	146
Figura 111 –	Assinaturas isotópicas registradas na concha (22)	147
Figura 112 –	Contagem por segundo dos isótopos de chumbo: concha (22)	148
Figura 113 –	Desenho esquemático ilustrando a concha de Pitar circinatus e as três	150
	camadas	
Figura 114 –	Localização dos perfis e das crateras na concha (23)	150
Figura 115 –	Assinaturas isotópicas registradas na concha (23)	151
Figura 116 –	Contagem por segundo dos isótopos de chumbo: concha (23)	152
Figura 117 –	Localização dos perfis e crateras na concha (24)	154
Figura 118 –	Assinaturas isotópicas registradas na concha (24)	154
Figura 119 –	Contagem por segundo dos isótopos de chumbo: concha (24)	155
Figura 120 –	Localização dos perfis e das crateras na concha (25)	157
Figura 121 –	Assinaturas isotópicas registradas na concha (25)	158
Figura 122 –	Contagem por segundo dos isótopos de chumbo: concha (25)	159
Figura 123 –	Assinaturas isotópicas obtidas nas 25 conchas	160
Figura 124 –	Assinaturas isotópicas: conchas e sedimentos superficiais	161
Figura 125 –	Assinaturas isotópicas (²⁰⁶ Pb/ ²⁰⁷ Pb) registradas nas conchas	162
Figura 126 –	Assinaturas isotópicas (²⁰⁶ Pb/ ²⁰⁷ Pb) registradas nos perfis	163
Figura 127 –	Assinaturas isotópicas ²⁰⁶ Pb/ ²⁰⁷ Pb segundo diversos autores	164
Figura 128 –	Mapa da distribuição das concentrações de chumbo:	
	conchas <i>vs.</i> sedimentos	166
Figura 129 –	Variação do sinal registrado em cps, ²⁰⁸ Pb (mín. e máx) por espécie	170
Figura 130 –	Variação do sinal registrado para ²⁰⁸ Pb (mín. e máx) por perfil	172

LISTA DE TABELAS

Tabela 1 –	Pontos de coleta, comprimento, largura e espessura das conchas	42
Tabela 2 –	Parâmetros operacionais para o laser	54
Tabela 3 –	Parâmetros operacionais para o ICP-MS	54
Tabela 4 –	Composição isotópica determinada nos perfis da concha (1)	63
Tabela 5 –	Composição isotópica determinada nos perfis da concha (2)	67
Tabela 6 –	Composição isotópica determinada nos perfis da concha (3)	70
Tabela 7 –	Composição isotópica determinada nos perfis da concha (4)	75
Tabela 8 –	Composição isotópica determinada nos perfis da concha (5)	79
Tabela 9 –	Composição isotópica determinada nos perfis da concha (6)	83
Tabela 10 –	Composição isotópica determinada nos perfis da concha (7)	87
Tabela 11 –	Composição isotópica determinada nos perfis da concha (8)	91
Tabela 12 –	Composição isotópica determinada nos perfis da concha (9)	95
Tabela 13 –	Composição isotópica determinada nos perfis da concha (10)	99
Tabela 14 –	Composição isotópica determinada nos perfis da concha (11)	103
Tabela 15 –	Composição isotópica determinada nos perfis da concha (12)	107
Tabela 16 –	Composição isotópica determinada nos perfis da concha (13)	110
Tabela 17 –	Composição isotópica determinada nos perfis da concha (14)	114
Tabela 18 –	Composição isotópica determinada nos perfis da concha (15)	117
Tabela 19 –	Composição isotópica determinada nos perfis da concha (16)	121
Tabela 20 –	Composição isotópica determinada nos perfis da concha (17)	125
Tabela 21 –	Composição isotópica determinada nos perfis da concha (18)	129
Tabela 22 –	Composição isotópica determinada nos perfis da concha (19)	134
Tabela 23 –	Composição isotópica determinada nos perfis da concha (20)	138
Tabela 24 –	Composição isotópica determinada nos perfis da concha (21)	141
Tabela 25 –	Composição isotópica determinada nos perfis da concha (22)	145
Tabela 26 –	Composição isotópica determinada nos perfis da concha (23)	149
Tabela 27 –	Composição isotópica determinada nos perfis da concha (24)	153
Tabela 28 –	Composição isotópica determinada nos perfis da concha (25)	156

Tabela 29 –	Intervalos dominantes (²⁰⁶ Pb/ ²⁰⁷ Pb) nas conchas analisadas	163
Tabela 30 –	Legislações ambientais e as concentrações de Pb em sedimento marinho	
	para áreas consideradas como não impactas	167
Tabela 31 –	Ponto de coleta, concentração de chumbo nas conchas e nos sedimentos	169
Tabela 32 –	Fator de correção e o erro estimado para os perfis da concha (1)	194
Tabela 33 –	Fator de correção e o erro estimado para os perfis da concha (2)	195
Tabela 34 –	Fator de correção e o erro estimado para os perfis da concha (3)	195
Tabela 35 –	Fator de correção e o erro estimado para os perfis da concha (4)	196
Tabela 36 –	Fator de correção e o erro estimado para os perfis da concha (5)	196
Tabela 37 –	Fator de correção e o erro estimado para os perfis da concha (6)	197
Tabela 38 –	Fator de correção e o erro estimado para os perfis da concha (7)	197
Tabela 39 –	Fator de correção e o erro estimado para os perfis da concha (8)	198
Tabela 40 –	Fator de correção e o erro estimado para os perfis da concha (9)	198
Tabela 41 –	Fator de correção e o erro estimado para os perfis da concha (10)	199
Tabela 42 –	Fator de correção e o erro estimado para os perfis da concha (11)	199
Tabela 43 –	Fator de correção e o erro estimado para os perfis da concha (12)	200
Tabela 44 –	Fator de correção e o erro estimado para os perfis da concha (13)	200
Tabela 45 –	Fator de correção e o erro estimado para os perfis da concha (14)	201
Tabela 46 –	Fator de correção e o erro estimado para os perfis da concha (15)	201
Tabela 47 –	Fator de correção e o erro estimado para os perfis da concha (16)	202
Tabela 48 –	Fator de correção e o erro estimado para os perfis da concha (17)	202
Tabela 49 –	Fator de correção e o erro estimado para os perfis da concha (18)	203
Tabela 50 –	Fator de correção e o erro estimado para os perfis da concha (19)	203
Tabela 51 –	Fator de correção e o erro estimado para os perfis da concha (20)	204
Tabela 52 –	Fator de correção e o erro estimado para os perfis da concha (21)	204
Tabela 53 –	Fator de correção e o erro estimado para os perfis da concha (22)	205
Tabela 54 –	Fator de correção e o erro estimado para os perfis da concha (23)	205
Tabela 55 –	Fator de correção e o erro estimado para os perfis da concha (24)	206
Tabela 56 –	Fator de correção e o erro estimado para os perfis da concha (25)	206

LISTAS DE ABREVIATURAS E SIGLAS

- POP'S Poluentes Orgânicos Persistentes
- Sr-estrôncio
- Ba bário
- Mg mangnésio
- Mn manganês
- Hg-mercúrio
- U urânio)
- Th tório
- Pb chumbo
- PbS- galena
- $Pb(C_2H_5)_4$ chumbo-tetraetila
- Pb(CH₃)₄ chumbo-tetra-metil
- Ca⁺² íons de cálcio 2+
- CO_3^{-2} íons de carbonato 2-
- ppm parte por milhão
- ppb parte por bilhão
- cps contagem por segundo dos íons

LA-ICP-MS - "Laser Ablation Inductively Coupled Plasma Mass Spectrometry"

- TEBIG Terminal marítimo da Baía da Ilha Grande
- GESAMP "Group of Experts on the Scientific Aspects of Marine Pollution"
- LGPA Laboratório Geológico de Processamento de Amostras
- UERJ Universidade do Estado do Rio de Janeiro
- NIST "National Institute of Standrdats"
- CONAMA Conselho Nacional do Meio Ambiente
- Flórida SQAG's "Florida Sediment Quality Assessment Guidelines
- CSQG's Canadian Sediment Quality Guidelines
- NOAA National Oceanic and Atmospheric Administration

SUMÁRIO

	INTRODUÇÃO
1	JUSTIFICATIVAS
1.1	Objetivos
1.2	Área de estudo
2	СНИМВО
2.1	Isótopos de chumbo
2.2	Assinaturas isotópicas
3	BIVALVES
3.1	Concha
3.2	Processos de formação da concha
3.3	Mineralogia da concha
3.4	Camadas que formam a concha
3.5	Padrões de crescimento da concha
3.6	Microestruturas minerais das conchas
4	MATERIAIS E MÉTODOS
4.1	Coleta
4.2	Preparação das amostras
4.3	Taxonomia das espécies
4.4	Montagem do molde de resina
4.5	LA-ICP-MS
4.6	Padrão
4.7	Parâmetros do laser
4.8	Parâmetros do ICP-MS
4.9	Tratamento dos dados
5	RESULTADOS
5.1	Concha (1): Glycymeris undata
5.2	Concha (2): Glycymeris undata
5.3	Concha (3): Pitar fulminatus
5.4	Concha (4): Pitar fulminatus

5.5	Concha (5): Pitar fulminatus	79
5.6	Concha (6): Cyclinella tennuis	83
5.7	Concha (7): Cyclinella tennuis	87
5.8	Concha (8): Corbula cubaniana	91
5.9	Concha (9): Corbula cubaniana	95
5.10	Concha (10): Corbula cubaniana	99
5.11	Concha (11): Tellina petitiana	103
5.12	Concha (12): Tellina petitiana	107
5.13	Concha (13): Trachycardium muricatum	110
5.14	Concha (14): Trachycardium muricatum	114
5.15	Concha (15): Felaniella vilardeboana	117
5.16	Concha (16): Felaniella vilardeboana	121
5.17	Concha (17): Anadara brasiliana	125
5.18	Concha (18): Chione paphia	129
5.19	Concha (19): Chione paphia	134
5.20	Concha (20): Chione paphia	138
5.21	Concha (21): Mactra janeiroensis	141
5.22	Concha (22): Tivela mactroides	144
5.23	Concha (23): Pitar circinatus	149
5.24	Concha (24): Pitar circinatus	153
5.25	Concha (25): Pitar circinatus	157
6	DISCUSSÃO DOS RESULTADOS	160
6.1	Assinaturas isotópicas de chumbo	160
6.2	Concentração de chumbo: sedimentos <i>vs</i> . conchas	164
6.3	Concentração de chumbo nas distintas espécies	167
6.4	Concentração de chumbo nas distintas camadas	170
	CONCLUSÕES	177
	REFERÊNCIAS	178
	ANEXO A	192

INTRODUÇÃO

Segundo o órgão consultivo da Organização das Nações Unidas para os aspectos científicos de proteção do meio ambiente marinho (GESAMP – "Group of Experts on the Scientific Aspects of Marine Pollution") a definição de poluição marinha é: "A introdução de substâncias pelo homem no ambiente marinho que provocam efeitos deletérios nos recursos biológicos; riscos para a saúde humana; impedimento das atividades socioeconômicas marinhas, as quais incluem: a pesca; a redução do uso e todas aquelas que afetam a qualidade da água do mar" (GESAMP, 1969). No artigo "Protecting the Oceans from Land-based Activities" (GESAMP, 2001) foram listadas as seguintes fontes de impacto de origem antrópica no meio marinho: esgoto, excesso de nutrientes, mobilização sedimentar, POPs (Poluentes Orgânicos Persistentes), hidrocarbonetos, metais, detritos e radionuclídios.

Ao longo dos últimos 30 anos, grandes mudanças ocorreram na costa brasileira em relação à poluição do ambiente marinho. A redução das emissões de poluentes ocorreram devido a uma série de medidas políticas, fiscalizadoras e do avanço tecnológico (LACERDA et al., 2006).

Os metais são introduzidos no sistema marinho, através da erosão de solos e rochas; eventos vulcânicos, quedas de meteoritos ou por meio de atividades humanas, tais como: mineração, o uso de agrotóxicos e tintas metálicas, na fabricação de manufaturados, entre outras (KARAGEORIS et al., 2003). No meio marinho, os metais tornam-se parte de um sistema dinâmico envolvendo distintos compartimentos ambientais: massa d'água, sedimento e biota, cujos processos que controlam a distribuição ocorre através de complexas interações físicas, químicas e biológicas (GUPTA et al., 2011).

O aporte de metais provocados pelas atividades humana expõem os animais a concentrações acima dos níveis naturais, quando absorvidas pelos organismos em doses elevadas podem causar efeitos deletérios ou até mesmo a morte dos animais. As conchas dos bivalves invariavelmente contém baixas concentrações de metais, dessa forma, a investigação da concentração de metais em conchas de bivalves pode revelar informações úteis sobre o ambiente.

Os bivalves ocorrem praticamente em todos os tipos de ecossistemas aquáticos (marinho raso e profundo, estuários, rios, lagos e lagunas) com ampla distribuição espacial, dos trópicos aos polos. Diversas espécies de bivalves possuem tolerância as variações

ambientais extremas (tais como a variação da salinidade, temperatura e ao ressecamento durante os períodos de maré baixa). Sendo assim, já foram utilizados no monitoramento de áreas poluídas por diversos autores (RICHARDSON et al., 2001; YAP et al., 2003; CRAVO et al., 2004).

As conchas de bivalves oferecem grande potencial como registro ambiental, Chow et al. (1976) foi um trabalho pioneiro, onde o autor reportou a presença de chumbo em bivalves da espécie *Mytilus edulis* e *Mytilus californianus*, os resultados confirmaram o acúmulo de chumbo no animal devido as contribuições antropogênicas. O uso das conchas de bivalves como registro de poluição também foi utilizado por Stecher et al. (1996), os autores analisaram a presença de Sr (estrôncio) e Ba (bário), em conchas atuais e pleistocênicas. Já Putten et al. (2000) analisaram espécimes de mexilhões para obter informações sobre o processo de incorporação de Mg (magnésio), Mn (manganês), Sr (estrôncio), Ba (bário) e Pb (chumbo) na concha. Enquanto que Bourgoin (1990) demonstrou a aplicação de conchas de *Mytilus edulis* no monitoramento da poluição por chumbo no meio marinho.

Os métodos convencionalmente usados na determinação de metais nas conchas são destrutivos, nos quais maceram as conchas e só permitem uma análise total do material (LACERDA et al., 1983; WASH *et al.*, 1995; PUENTE et al., 1996). Muitos destes estudos anteriormente citados, utilizaram métodos nos quais as análises permitem somente o cálculo da composição média dos elementos no interior das conchas, perdendo informações temporais importantes, registradas ao longo da concha. As conchas dos bivalves crescem sequencialmente através da deposição sistemática das camadas que as formam ao longo do tempo. A análise dessas camadas pode revelar as condições ambientais no momento em que a concha foi depositada. As análises pontuais no interior das conchas podem ser realizadas através de técnicas de alta resolução espacial, como a técnica LA-ICP-MS (*Laser Ablation Inductively Coupled Plasma Mass Spectrometry*).

As primeiras análises quantitativas de metais em conchas através da técnica LA-ICP-MS foram realizadas por: Perkins et al. (1991) e Fuges et al. (1993), eles observaram uma relação direta entre os níveis de concentração de metais contidos na água do mar, nos tecidos dos animais e nas conchas dos bivalves. Price e Pearce (1997) investigaram a utilização da concha de *Cerastoderma edule* para fins de monitoramento da poluição por metais através da técnica LA-ICP-MS.

A aplicabilidade dos isótopos de chumbo em estudos ambientais é uma abordagem bem difundia, diversos estudos abordaram esse tema, cujo objetivo é caracterizar a origem da fonte poluidora de chumbo no meio ambiente através das assinaturas isotópicas de chumbo (ETTLER et al., 2004; MONNA et al, 1997; GALLON et al., 2006). No Brasil, estudos envolvendo análises isotópicas de chumbo foram realizados por: Gioia (2004); Aily (2001); Babinski et al. (2003); Geraldes et al. (2006); Moraes et al. (2004); Moura et al. (2004); entre outros.

1 JUSTIFICATIVAS

Diversos autores analisaram a presença de chumbo em bivalves ao redor do mundo, entre eles destaca-se o trabalho realizado por Gillink (2005); no Brasil, poucos trabalhos foram realizados com esse tema, entre eles: Lacerda et al. (1983); Bellotto et al. (2007); e Falcão (2012). Contudo, nenhum trabalho abordou a composição isotópica do chumbo no interior das conchas de bivalves, com o intuito de identificar a(s) fonte(s) poluidoras de chumbo, através da técnica LA-ICP-MS. Neste sentido, este estudo é pioneiro na literatura.

Visando o controle da qualidade ambiental, estudos relacionados à poluição por metais têm despertado maior atenção das autoridades brasileiras no controle e monitoramento ambiental (PEREIRA et al. 2003). A região da Baía da Ilha Grande é considerada uma área bem preservada, contudo, apresenta atividades antrópicas potencialmente poluidoras como por exemplo o aporte de esgotos domésticos e industriais; a presença de portos, estaleiros navais, além dos terminais de minério e óleo diesel em suas adjacências. Dessa forma, esse estudo colabora com o desenvolvimento da pesquisa, na busca por informações sobre as possíveis fontes poluidoras de chumbo da região.

1.1 OBJETIVOS

Desenvolvimento metodológico da análise de isótopos de chumbo em conchas de bivalves através da técnica LA-ICP-MS, com o intuito de caracterizar a composição isotópica de chumbo no interior das conchas.

Objetivos específicos:

- a) Analisar a composição isotópica do chumbo em conchas da Baía de Ilha Grande, a fim de caracterizar possíveis assinaturas isotópicas de chumbo;
- b) Observar se ocorre variação na concentração de chumbo nas distintas camadas que formam a concha, a afim de verificar qual camada apresenta melhores resultados.

1.2 ÁREA DE ESTUDO

A Baía da Ilha Grande está situada entre os meridianos 44° 20' W e 44° 10' W e entre as latitudes 23° 15' S e 23° 25' S, formando um sistema estuarino a oeste com a Baía de Sepetiba (Figura 1), separada do mar aberto pela Ilha Grande. A baia está inserida numa área bem preservada da floresta atlântica com diversos ecossistemas marinhos, a baia é cercada por costões rochosos, ilhas, praias arenosas, manguezais e pela serra do mar.

Fonte: O autor, 2016.

As características geológicas da área de estudo apresentam rochas com granitos, gnaisses, com proporções menores de migmatitos e sedimentos do Holoceno, representados

por sedimentos de praia e planícies fluviais, que se estendem a partir das áreas próximas ao pé da Serra do Mar até o mar. Estas características geológicas desempenham papéis importantes na geomorfologia local, tanto em termos de relevo como nas características da bacia de drenagem, a geomorfologia da região.

A bacia hidrográfica caracteriza-se pelo contato direto da serra do Mar com o oceano e por possuir planícies costeiras pouco desenvolvidas ou até mesmo inexistentes. O clima da região é super-úmido, os rios apresentam uma vazão pequena, com picos de vazão acentuados durante o verão enquanto que no inverno os fluxos são menores. A área possui uma linha de costa irregular onde alternam-se pontas rochosas, pequenas enseadas, baías e ilhas. Observa-se ainda a presença de manguezais nas enseadas e nos locais mais abrigados.

A região conta com dois canais dragados: o canal de acesso ao terminal marítimo TEBIG (Terminal da Baía da Ilha Grande) com profundidade média de 25m; e o canal de acesso ao antigo de Porto de Itaguaí, com profundidade de 24m. Ambos permitem a navegabilidade de grandes embarcações (cargueiros e petroleiros). Já na plataforma interna, adjacente a baía, a profundidade varia em torno de 40m, com um gradiente suave de 1:900 (0,001m/m), o gradiente aumenta a medida que aproxima-se do maciço cristalino da Ilha Grande chegando a 1:50 (0,02m/m), (DIAS et al., 1990).

Os mesmos autores citados acima elaboraram um mapa sedimentológico da baía, onde observa-se areias grossas e médias na face leste da baía e na plataforma interna até a isóbata de 50m. Já as areias muito finas e finas encontram-se na face oeste da baía e distribuem-se amplamente na plataforma interna, enquanto lamas e argilas nas regiões de mais baixa energia, no canal central e nas enseadas abrigadas da região.

A baía da Ilha grande sofreu intenso crescimento urbano, onde ocorreram transformações relacionadas à ocupação do território, o uso dos recursos naturais acompanhados da instalação de importantes unidades industriais e também devido ao crescimento do turismo na região.

A região apresenta como principais destaques do setor econômico os estaleiros, além do Terminal – TEBIG e das usinas nucleares de Angra I, II e III; os serviços ligados as atividades pesqueiras e o turismo. Estes empreendimentos são os principais geradores de emprego e renda na região.

2 CHUMBO:

Em condições normais, os elementos-traço são encontrados no ambiente em concentrações da ordem de ppm (parte por milhão) ou ppb (partes por bilhão), variando de acordo com a região, dependendo do aporte proveniente das fontes naturais, (SUGIUO et al., 2003). No meio marinho, a precipitação ou dissolução desses elementos, depende da especiação de cada elemento e das condições físico-químicas do meio (BAIRD et al., 2002). A origem natural do chumbo está associada aos eventos de erupção vulcânicas, erosão das rochas, incêndios florestais e impactos de meteoritos. A principal fonte natural de chumbo provém da degradação dos minérios de galena (PbS), (FAURE et al., 1986).

O chumbo (Pb) também pode ser encontrado nos minerais que contém U (urânio) e Th (tório) como por exemplo: zircão, apatita, monazita, uranita, entre outros. O chumbo provenientes do decaimento radioativo do U e Th é denominado chumbo radiogênico. Enquanto que o chumbo "comum" é aquele contido nos minerais que possuem chumbo desde sua formação, sem conter minerais que apresentam Th e U na sua formação, como por exemplo os depósitos mais antigos de galena (PbS), no qual todo o chumbo presente no mineral é denominado de "chumbo comum" (HART et al., 1968; KANSEWICH, 1968; DOE, 1972).

Os primeiros registros que relatam o uso do chumbo pela humanidade datam mais de 5000 anos atrás, quando os chineses começaram a explorar o chumbo na forma metálica. No século V, o Império Romano utilizou extensivamente as reservas de galena, ao longo da Península Ibérica, (GERALDES et al., 2006). Atualmente, o aporte do chumbo de origem antrópica no ambiente ocorre através das atividades de mineração, produção de manufaturados, fabricação de baterias, cerâmicas, plásticos, reciclagem e eliminação de compostos contendo chumbo, queima de combustíveis fósseis (carvão, gasolina aditivada contendo chumbo-tetraetila), uso de fertilizantes minerais, esgoto, lixo doméstico, tinta metálicas impermeabilizantes, ligas metálicas, entre outros. (MIHALJEVIÊ, 1999; RIEUWERTS et al., 1999; ADRIANO, 2001; AHLBERG et al., 2006). A utilização e exploração do chumbo ocorre principalmente devido as suas propriedades, entre elas: flexibilidade, baixo ponto de fusão, resistência a corrosão, opacidade aos raios X, etc.

2.1 ISÓTOPOS DE CHUMBO

Os isótopos são átomos de um mesmo elemento que possuem o mesmo número de prótons mas diferem no número de nêutrons, resultando numa massa atômica diferente para cada isótopo. Atualmente, o elemento chumbo presente no planeta, caracteriza-se por apresentar quatro isótopos principais na natureza, sendo eles e suas respectivas abundância natural: ²⁰⁸Pb (52%), ²⁰⁶Pb (24%), ²⁰⁷Pb (23%), e ²⁰⁴Pb (1%). Os três primeiros são radiogênicos, provenientes do decaimento radioativo dos radioisótopos ²³²Th, ²³⁸U e ²³⁵U, respectivamente, por essa razão, a abundância destes aumenta ao longo do tempo geológico. Enquanto que o ²⁰⁴Pb é estável, e o único não radiogênico, formado durante a nucleossíntese, com abundância primordial constante desde a época da formação da Terra (LONG, 1999). A abundância dos isótopos de chumbo no ambiente depende estritamente das concentrações primordiais do Pb, U e Th e do tempo de decaimento dos elementos radioativos, meia-vida(t_{1/2}), (FAURE et al., 2005).

A formação dos isótopos ²⁰⁸Pb, ²⁰⁶Pb e ²⁰⁷Pb ocorre através de um complexo esquema de decaimento em série, a partir dos pais radioativos (²³²Th, ²³⁸U e ²³⁵U), envolvendo a formação de diversos outros elementos radioativos intermediários (chamados de filhos radioativos) cada um com tempo de meia-vida próprio. A Figura 2, detalha o esquema de decaimento radioativo do ²³⁸U responsável pela formação dos isótopos radiogênicos do Pb.

Figura 2 - Esquema do decaimento do ²³⁸U, ²³⁵U e ²³²Th

Fonte: ALENCAR, 2012.

2.2 ASSINATURAS ISOTÓPICAS

A determinação da concentração de chumbo no ambiente, por si própria, não é capaz de informar com precisão a origem do elemento, uma vez que são diversas as fontes poluidoras que contribuem para a dispersão do chumbo no meio ambiente. Nesse sentido, a composição isotópica do chumbo é um importante dado na caracterização das fontes poluidoras. Cada fonte possui composição isotópica própria, como se fosse uma "impressão digital" de sua origem, a esse comportamento entre os isótopos é denominado de assinatura isotópica. Dessa forma, a análise dos isótopos de chumbo é uma excelente ferramenta na investigação da origem do chumbo no ambiente. Outro fator determinante nesse tipo de análise, é a capacidade da composição isotópica permanecer inalterada ao longo do tempo, uma vez que os processos físico-químicos atuantes no meio ambiente não alteram as razões entre os isótopos. Assim, cada reservatório geológico apresenta características e evolução própria, resultando distintas razões isotópicas entre os diversos depósitos terrestre, ou seja, cada reservatório apresenta composição isotópica própria (ou assinatura isotópica), (BOLHÖFER e ROSMAN, 2001; VEYSSEYRE et al., 2001).

Mesmo que cada fonte de chumbo apresente composição isotópica própria e específica, é importante ressaltar que os distintos compartimentos ambientais estão conectados entre si. Dessa forma, a composição isotópica final no meio ambiente é fruto da mistura entre as diversas fontes de chumbo (antropogênicas e naturais). Para determinar cada fonte atuante no ambiente é necessário a caracterização geral de todas as fontes potenciais de chumbo da região analisada. Além disso, os dados associados aos cálculos de massa e da concentração por volume, juntamente com os dados da composição isotópica, são fundamentais para a identificação e reconhecimento da parcela de cada fonte contribuinte.

Três fatores influenciam no comportamento geoquímico do chumbo nos reservatórios terrestre: o fracionamento entre os elementos (U, Th e Pb); o tempo de formação da crosta; e o grau de metamorfismo em que as diferentes fontes pré-existentes foram retrabalhadas e homogeneizadas durante os eventos de reciclagem da crosta, (DOE e STACEY, 1974).

Nos estudos ambientais envolvendo isótopos de chumbo, geralmente utilizam-se as razões ²⁰⁶Pb/²⁰⁴Pb; ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁸Pb/²⁰⁴Pb, ²⁰⁶Pb/²⁰⁷Pb; ²⁰⁸Pb/²⁰⁶Pb sendo mais comum o uso da razão ²⁰⁶Pb/²⁰⁷Pb, pelo fato dessa razão gerar dados mais confiáveis, devido a similaridade entre a abundância dos isótopos (²⁰⁶Pb e ²⁰⁷Pb) na natureza, e também por serem provenientes

do decaimento do mesmo elemento. Entretanto, a normalização feita através do isótopo ²⁰⁴Pb (²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁸Pb/²⁰⁴Pb) gera maior variância entre os resultados, devido a menor ambulância do ²⁰⁴Pb no meio ambiente em relação aos outros isótopos. Ou seja, os dados normalizados através do isótopo ²⁰⁴Pb geram outro comportamento para a configuração isotópica analisada, (EREL et al., 2001).

O rastreamento da origem de fontes de poluição por chumbo por meio das razões isotópicas, foi realizado com sucesso na análise de diversos compartimentos ambientais, entre eles: aerossóis atmosféricos (STURGES e BARRIE, 1987; MONNA et al., 1997; BOLHÖFER e ROSMAN, 2000, 2001; FLAMENT et al., 2002); sedimentos de lagos (FARMER et al., 1996, MONNA et al., 1999; RENBERG *et al.*, 2002), neve e gelo; (DÖRING et al., 1996; ROSMAN et al., 2000; SIMONETTI et al., 2000), depósitos de turfa (SHOTYK et al., 1996, WEISS et al., 1999; NOVAK *et al.*, 2003), anéis de árvores (WATMOUGHT et al., 1999; PATRICK, 2006; SAVARD et al., 2006a), líquens (CARIGNAN e GARIÉPY, 1995; DOUCET e CARIGNAN, 2001; KYLANDER et al., 2007), gramas (BACON et al., 1996), entre outros.

Como exemplo de assinaturas isotópicas de chumbo pode-se citar os antigos depósitos de galena (PbS), cujos dados geralmente são caracterizados com baixos valores para a razão ²⁰⁶Pb/²⁰⁷Pb (1,06-1,10). Enquanto que os depósitos mais recentes, refletem razões ²⁰⁶Pb/²⁰⁷Pb com valores maiores (>1,18), devido a maior quantidade de chumbo radiogênico (provenientes do decaimento de U e Th), (FARMER et al., 2000; BACON, 2002).

Os valores observados para as razões ²⁰⁶Pb/²⁰⁴Pb e ²⁰⁶Pb/²⁰⁷Pb nos minérios de galena ao redor do mundo, geralmente variam entre (16,0-18,5) e (1,19-1,25); respectivamente, HANSMANN e KÖPPEL, 2000. Porém, em algumas regiões, os depósitos podem apresentar valores extremamente baixos para a razão ²⁰⁶Pb/²⁰⁷Pb (1,03-1,10); como ocorre no depósito de Broken Hill, na Austrália. No depósito do Vale do Mississippi, nos EUA, as razões apresentam valores maiores: ²⁰⁶Pb /²⁰⁴Pb (>20,0); ²⁰⁶Pb/²⁰⁷Pb (1,31-1,35). Novamente, a diferença de valores é atribuída a maior quantidade de chumbo radiogênico no minério proveniente do Vale do Mississippi, (DOE e DELEVAUX, 1972).

A utilização da gasolina com chumbo aditivado, representou uma das principais fontes de poluição por chumbo no mundo, entre 1940 e 1980. Para a identificação da origem do chumbo proveniente da combustão da gasolina aditivada com chumbo-tetraetila: $Pb(C_2H_5)_4$; e chumbo-tetra-metil: $Pb(CH_3)_4$, é fundamental conhecer a origem e a idade do minério utilizado na fabricação (SHIHARATA et al., 1980; MONNA et al., 1997). A composição isotópica da gasolina aditivada com chumbo reflete a composição isotópica do depósito original do minério utilizado no refino da gasolina. Os primeiros trabalhos a revelar a poluição por chumbo-tetraetila na atmosfera foram realizados por: Chow et al. (1965) e Tatsumoto et al. (1965). Ambos alertaram quanto as elevadas concentrações de chumbo na atmosfera, devido a queima da gasolina aditivada com o chumbo-tetraetila. Neste sentido, é indispensável coletar informações a respeito da origem da gasolina utilizada na região, a fim de compreender melhor a composição isotópica do chumbo-tetraetila e a dispersão no meio ambiente (DOE e STACEY, 1974; GROUSSET et al., 1994; WEISS et al., 1999).

A queima do carvão é outra importante fonte antropogênica cuja contribuição influencia na composição isotópica final do chumbo no meio ambiente. A assinatura isotópica obtida a partir da combustão do carvão, é difícil de ser discernida, devido a mistura que o corre na atmosfera com o chumbo proveniente de outras fontes antrópicas. Análises de aerossóis atmosféricos foram realizadas por Weiss et al. (1999); Novak et al. (2003); os valores obtidos para a razão ²⁰⁶Pb/²⁰⁷Pb ficaram em torno de 1,15.

A composição isotópica do chumbo proveniente de materiais manufaturados e de processos metalúrgicos, como por exemplo: a fabricação e reciclagem de baterias, também refletem a composição isotópica do minério utilizado como matéria prima (ETTLER et al., 2004). Mesmo após a deposição das partículas em solos, ou no leito dos rios e mares, as partículas depositadas permanecem com a mesma assinatura isotópica do minério (ETTLER et al., 2005; HOU et al., 2006; KOMÁREK et al., 2007).

Análises de sedimentos, realizados por Monna et al. (1995 e 2000), em uma lagoa costeira no sul da França, reconstruiu a distribuição do aporte de chumbo ao longo dos últimos 150 anos. Os resultados revelaram que o chumbo presente nos sedimentos da lagoa deriva de uma mistura entre três fontes: chumbo proveniente da gasolina, com a razão ²⁰⁶Pb/²⁰⁷Pb variando entre (1,10-1,11); chumbo de origem natural (1,20); e chumbo proveniente do esgoto associado as descargas fluviais (1.15- 1,17), (MONNA et al., 1995). Os sedimentos superficiais foram caracterizados com baixos valores para a razão ²⁰⁶Pb/²⁰⁷Pb, correspondentes ao chumbo derivado da gasolina (MONNA et al., 2000). Em contraste com os maiores valores observados nos sedimentos análogos aos eventos de chuva ou tempestade (responsáveis pelo maior aporte do material de origem geológica) ocorreram no setor norte da lagoa (MONNA et al., 1995), onde os valores para a razão ²⁰⁶Pb/²⁰⁷Pb foram maiores.

3 BIVALVES

Os bivalves são a segunda maior Classe de moluscos, com aproximadamente 20.000 espécies. Os bivalves desempenham papel fundamental no ecossistema, onde são importantes fontes de proteína animal para diversas outras espécies; também são destaques no setor socioeconômico, principalmente na maricultura, com a produção de pratos típicos e na fabricação de pérolas ornamentais, (BIELER et al., 2014).

Os bivalves são animais exclusivamente aquáticos, filtradores, alimentam-se de partículas em suspensão na água (GOSLING, 2004). Algumas espécies vivem enterradas em substratos arenosos ou lodosos, enquanto outras vivem presas em substratos sólidos, como por exemplo as ostras e os mexilhões; e ainda há aquelas que são livres e não se fixam em substrato algum (Figura 3).

Figura 3 - Modo de vida dos bivalves

Fonte: CARVALHO, 2000.

A maioria dos bivalves vive menos de 10 anos, porém, alguns podem facilmente atingir 50 anos (PETERSON, 1986) enquanto outros podem viver por 225 anos ou até mesmo 374 anos (SCHÖNE et al., 2005). Além disso, as conchas de bivalves são frequentemente encontradas em sambaquis arqueológicos ou em registros fósseis, permitindo que as condições ambientais do passado sejam reveladas através de análises químicas dos elementos contidos no interior da concha.

3.1 CONCHA

As conchas dos bivalves são formadas por camadas depositadas de acordo com ciclos metabólicos do animal, os quais podem ser da ordem de dias ou sazonais, apresentando limites de crescimento bem definidos, principalmente na superfície externa da concha. Dentre as feições de crescimento da concha, as linhas de crescimento impressas na superfície externa da concha estão presente em todas as espécies de bivalves. As análises realizadas ao longo dessas linhas podem revelar a história de acumulação dos elementos ao longo da vida do animal (KENNISH, 1980; MARGOSIAN et al., 1987).

Os bivalves possuem a concha externa composta por duas valvas. As valvas mantemse unidas através dos músculos adutores e do ligamento, este último, possui propriedades elásticas e está localizado na parte frontal da concha. As valvas são abertas através da extensão do ligamento e fechadas pela contração dos músculos adutores (Figura 4).

Figura 4 - Feições morfológicas da concha de um bivalve

Fonte: CENTRO DE ESTUDOS DO MAR - UFPR, 2014.

3.2 PROCESSOS DE FORMAÇÃO DA CONCHA

A concha é envolvida por uma fina camada externa orgânica proteica, denominada periostraco, acredita-se que além de proteger a concha o periostraco também serve como um molde para deposição dos cristais de carbonato de cálcio (WILBUR, 1983). As partes calcificadas da concha são formadas por cristais de carbonato de cálcio envolvidos numa matriz orgânica, os cristais são secretados pelas células epiteliais do manto. O manto dos bivalves funciona como uma capa protetora dos órgãos, localizado entre a concha e os órgãos internos. O manto apresenta três dobras: a interna (muscular), a intermediária (sensorial), e a externa (secretora), (Figura 5).

Figura 5 – Esquema ilustrativo: corte transversal da extremidade da concha de um bivalve expondo as partes internas do animal

Fonte: Modificado de TAYLOR, 1968.

A secreção da camada externa da concha inicia-se na extremidade posterior da concha, a partir da deposição do periostraco, no lado interno da dobra externa do manto (Figura 6).

Figura 6 - Esquema ilustrativo do corte transversal ao eixo central da concha

Legenda: (A) Local de deposição da camada externa (B) Vista superior do corte. Fonte: UBUKATA, 2001.

Após a deposição da camada externa, a deposição das camadas intermediária e interna da concha continua nas áreas anexas aos músculos palial e adutores, onde os cristais e a matriz orgânica são secretados por meio de uma solução, conhecida como fluido extrapalial, localizado na cavidade do fluido extrapalial, entre o manto e a concha. Todos os componentes da concha, orgânicos e inorgânicos, são secretados a partir desse fluido, através das células epiteliais do manto, (TAYLOR et al., 1968). A consistência do fluido extrapalial é uma fina película líquida entre a superfície interna da concha calcária e o epitélio. A camada interna da concha é precipitada a partir do fluido extrapalial interno, ao passo que as camadas externa e a intermediária são precipitadas a partir do fluido extrapalial externo (GILLINK et al., 2005). Tipicamente, o fluido extrapalial é isolado do meio externo, consequentemente, da água do mar, dessa forma o fluido extrapalial possui concentrações distintas de elementos em relação aos presentes na água do mar (Figura 7).

Figura 7 - Esquema ilustrativo: corte transversal da extremidade da concha de um bivalve expondo as partes internas do animal

Fonte: Modificado de GILLINK, 2005.

Os elementos do meio externo chegam ao local de calcificação através de diversas rotas possíveis. Normalmente, os íons entram na hemolinfa dos bivalves, principalmente, por meio das brânquias, embora também possam entrar nos tecidos através do intestino ou por absorção direta pelo epitélio do manto exterior. Os elementos fornecidos pela hemolinfa seguem para os compartimentos do fluido palial através das células epiteliais do manto (WILBUR e SALEUDDIN, 1983).

Acredita-se que o carbonato é depositado através de uma matriz orgânica previamente depositada, por meio de um padrão similar a uma parede de tijolos e argamassa (os carbonatos sendo os tijolos e a matriz orgânica a argamassa), (ADDADI e WEINER, 1997). No entanto, muitos aspectos da biomineralização ainda são desconhecidos, de uma maneira geral, pode-se generalizar alguns aspectos da biomineralização, a qual é um processo altamente complexo que está longe de ser completamente compreendido. A sequência detalhada na Figura 8, ilustra como ocorre o crescimento, em forma de placas, da camada interna a partir do epitélio.

Figura 8 - Sequência de deposição da camada interna da concha de bivalves

Legenda: (i) os cristais estão intercalados em placas com membranas orgânicas; (ii) uma nova placa começa a crescer acima através da absorção de íons de Ca^{+2} e CO_3^{-2} pela membrana; (iii) a nova placa cresce em todas as direções, o crescimento é mais rápido ao longo do eixo vertical; (iv) uma nova membrana orgânica é depositada sobre a ultima placa, travando o crescimento vertical da placa, porém, mantendo o crescimento no eixo horizontal. Os cristais começam a projetar-se através da membrana. As placas encostam-se lateralmente e uma nova placa começa a crescer acima da membrana orgânica.

Fonte: LIN, 2008.

3.3 MINERALOGIA DA CONCHA

Sobre condições normais de calcificação, dois compostos de carbonato de cálcio são formados: aragonita e calcita. Algumas espécies apresentam a concha constituída somente por aragonita, enquanto outras apresentam os dois compostos. Contudo, aragonita e calcita ocorrem sempre separados, em distintas camadas, de forma que os dois compostos nunca estão misturados numa mesma camada da concha. Geralmente, a camada externa e intermediária são compostas por calcita enquanto que a interna formada por cristais de aragonita, outras combinações entre as camadas e os minerais ocorrem entre as espécies,

porém, não há nenhum gênero na Classe Bivalvia com a concha composta somente por cristais de calcita (TAYLOR et al., 1968).

Como dito anteriormente, o processo de formação dos cristais, ocorre no fluido extrapalial, local onde a biomineralização dos cristais é sintetizada em duas etapas físicoquímicas: a nucleação e o crescimento do cristal (GRIGOREV, 1960). A primeira etapa da mineralização, a nucleação dos cristais, ocorre através de uma variedade de padrões de polígonos (hábitos cristalinos) com crescimento orientado. A nucleação ocorre no fluido extrapalial, quando os íons Ca^{+2} e CO_3^{-2} são atraídos para áreas específicas da matriz orgânica, onde os cristais são desenvolvidos. Durante este processo, as proteínas que formam a matriz orgânica são secretadas pelas células epiteliais do manto, com a matriz envolvendo os cristais individualmente para formar o cimento que os une.

Os minerais das conchas dos bivalves desenvolvem-se em formas de placas ou haste alongada, e após a nucleação, o crescimento dos cristais pode ocorrer de diferentes hábitos, resultando em diversos tipos de hábitos cristalinos, ou microestruturas cristalinas. Vários autores sugerem que a matriz orgânica pode influenciar no tipo de cristal e na orientação das camadas mineralizadas, entre eles, Taylor et al. (1973) e Kobayashi (1994). Segundo os mesmos autores, a nucleação e o crescimento dos cristais também pode ser afetada por fatores ambientais e fisiológicos. Taylor et al. (1968), afirmou que os três principais fatores influenciadores no crescimento dos biominerais na concha são: a matriz orgânica, a temperatura da água durante o crescimento, e a salinidade.

3.4 CAMADAS QUE FORMAM A CONCHA

A parte calcaria da concha dos bivalves consiste de duas ou três camadas, normalmente a camada externa, prismática, enquanto a intermediária e interna são classificadas como nacaradas. As três camadas são depositadas a partir do fluido extrapalial, secretado pelo manto. Este fluido contem os componentes para a biomineralização e também pode conter os metais contidos no meio externo. Existe ainda uma fina camada, denominada prismas do miostraco associada às cicatrizes de contorno dos músculos adutor e palial, localizada entre a camada externa e a intermediaria e/ou a interna. Essas cicatrizes de contorno ocorrem na superfície interna da concha, são marcas provocadas pela deposição dos
cristais nas áreas onde os músculos palial e adutores estão conectados a concha. Essas impressões estão relacionadas ao sistema taxonômico da Classe (Figura 9).

Figura 9 – Características pertinentes as conchas dos bivalves

Legenda. (A) Cone transversar ao eixo centrar da concha expondo as distintas camadas: 1- camada externa (prismática), 2- camada interna (nacarada), 3- prismas do miostraco.
 (B) Cicatrizes impressas na superfície interna da concha.
 Fonte: TAYLOR, 1973.

O número de camadas presente nas conchas dos bivalves está correlacionado a fatores genéticos, podendo variar de duas a três camadas entre as espécies de bivalves (KOBAYASHI e SAMATA, 2006), (Figura 10).

Figura 10 - Esquema ilustrativo das camadas compositoras das conchas de bivalves

Legenda: (A) Concha de bivalve com duas camadas na concha. (B) Concha de bivalve com três camadas na concha. Fonte: TAYLOR, 1968.

3.5 PADRÕES DE CRESCIMENTO DA CONCHA

A concha dos bivalves apresenta distintos padrões de crescimento, os quais podem ser visualizados através de bandeamentos demarcados nas camadas da concha, essas bandas estão associadas as distintas taxas de crescimento da concha: sazonal, diário ou da ordem de horas. As linhas de crescimento impressas na superfície externa da concha possuem contornos bem definidos, esses bandeamentos correspondem ao crescimento anual ou sazonal (A. HALL et al., 1974). As bandas menores, cujos contornos são mais suaves, correspondem ao crescimento diário. Enquanto que as faixas com espessura da ordem de micras, correspondem ao crescimento ocorridos dentro do intervalo de horas; essa formação mais fina é observada nas microestruturas (hábitos cristalinos) no interior das camadas da concha (Figura 11).

Figura 11 - Esquema ilustrativo do crescimento da concha de bivalves

Legenda: (A) Vista superior da concha com as linhas de crescimento na superfície externa;(B) Vetores de crescimento da superfície externa da concha, em destaque o vetor de crescimento do eixo central da concha;

(C) Corte transversal ao eixo central expondo as partes internas da concha, as feições de crescimento e as sequências de deposição das camadas. Nota-se na camada externa bandeamentos menores - relativo aos períodos com baixa taxa de crescimento (bandeamento diários), e bandeamento maiores - relativo aos períodos de rápido crescimento (bandeamento anual ou sazonal). Na camada interna observa-se que a sequência de deposição é paralela a superfície externa da concha.

Fonte: UBUKATA, 2001.

As distintas taxas de crescimento estão associadas, principalmente, as variações dos parâmetros ambientais, tais como: a temperatura e a salinidade, os quais influenciam diretamente nos processos metabólicos e consequentemente no desenvolvimento da concha. Sendo assim, algumas espécies apresentam o metabolismo acelerado durante o verão, apresentando a maior taxa de crescimento nos meses mais quentes, enquanto outras desenvolvem-se melhor durante o inverno (GILLINK, 2005). A variação da temperatura da

água do mar, além de ser influenciada pela sazonalidade do clima, também pode ser influenciada por fatores relacionados a geomorfologia da linha de costa e a profundidade da coluna d'água, esses fatores são capazes de variar a temperatura da água ao longo do dia, de acordo com o regime de maré ou vento.

3.6 MICROESTRUTURAS MINERIAS DAS CONCHAS

Os cristais (aragonita e calcita) e a matriz orgânica agregam-se em microestruturas regulares distribuídas no interior das camadas. Da mesma forma que o número de camadas está correlacionados a fatores filogenéticos, o mesmo aplica-se para os padrões das estruturas internas, que também são controlados pelos genes das espécies. As microestruturas mais comuns nas conchas de bivalves estão ilustradas abaixo (Figura 12):

Figura 12 – Esquema ilustrativo da microestruturas

Legenda: (a) Nacarada em pilares, (b) Nacarada em placas, (c) Foliada, (d) Prismática, (e) Lamelar cruzada, (f) Lamelar cruzada complexa, (g) Homogênea. Fonte: CURREY e TAYLOR (1974).

5.00

Abaixo são apresentadas as microestruturas e o mineral que as formam (KOBAYASHI e SAMATA, 2006):

a) Estrutura nacarada em pilares: sempre aragonita, formadas por placas arredondadas ou retangulares, em colunas perpendiculares à superfície da concha.

b) Estrutura nacarada em placas: sempre composta por cristais de aragonita, em formas tabulares, dispostos horizontalmente um sobre o outro. Os cristais crescem com aparência similar a uma parede de tijolos.

c) Estrutura prismática simples: constituída por cristais de calcita, com prismas alongados, orientados verticalmente.

d) Estrutura prismática composta: sempre composta por aragonita, com prismas compostos de diferentes tamanhos, agrupados paralelamente.

e) Estrutura folheada: sempre apresenta composição por cristais de calcita com cristais alongados e achatados, arranjados lado a lado ou em planos superpostos, com formas de placas retangulares unidas lateralmente, os cristais crescem em mosaico, com aparência similar a um favo de mel.

f) Estrutura lamelar cruzada: sempre composta por aragonita, com cristais em formas de hastes, dispostos em duas direções diferentes, formando dois blocos inter-penetrantes, em posições inclinadas opostas um ao outro.

g) Estrutura lamelar cruzada complexa: também é sempre formada por aragonita, similar à ultima porém, as hastes são arranjadas em 4 ou mais direções, com uma haste podendo apresentar crescimento radial.

h) Estrutura homogênea: sempre composta por aragonita, formada por cristais de granulometria fina.

Abaixo são apresentadas fotografias das microestruturas obtidas por meio de microscópio eletrônico ou ótico (Figura 13).

Figura 13 - Microestruturas minerais presente nas conchas de bivalves

<sup>Legenda: a) Nacarada em pilares; b) Nacarada em placas; c) Prismática simples;
d) Prismática composta; e) Estrutura folheada; f) Lamelar cruzada;
g) Lamelar cruzada complexa; h) Homogênea.
Fonte: KOBAYASHI e SAMATA, 2006.</sup>

Nas conchas de bivalves as microestruturas compostas por cristais de aragonita são mais comuns do que as microestruturas de calcita. As estruturas prismáticas simples, prismáticas compostas e folheadas são formadas por cristais de calcita, Figura 14. Enquanto que os outros tipos de estruturas (nacarada, lamelar e homogênea) são formados por cristais de aragonita. A concha de uma determinada espécie caracteriza-se tanto pelo número de camadas como pelo o arranjo de suas microestruturas.

Legenda: (a) superfície externa da concha (*Anodonta woodiana*); (b) corte transversal, no detalhe a camada externa prismática, po: periostraco; pr: camada prismática, escala: 50 μm. Fonte: UBUKATA (2001).

Diversas combinações entre as microestruturas são observadas nas conchas dos bivalves, as combinações mais representativas, de acordo com Kobayashi e Samata (2006), são descritas a seguir:

- a) prismática simples (camada externa) → nacarada (camada interna);
- b) folheada (camada externa) → lamelar cruzada (camada intermediária) → lamelar cruzada complexa (camada interna);
- c) prismática composta (camada externa) → lamelar cruzada e/ou homogênea (camada intermediária) → lamelar cruzada complexa e /ou homogênea (camada interna).

4 MATERIAIS E MÉTODOS

As conchas foram coletadas durante as campanhas de campo do projeto de graduação de Alan Martins, formado pela Faculdade de Oceanografia da UERJ, sob coordenação do professor e pesquisador Mauro Cesar Geraldes. O objetivo principal daquele projeto foi analisar a presença de metais e a composição isotópica do chumbo nos sedimentos da Baía da Ilha Grande (MARTINS, 2014).

4.1 COLETA

As conchas foram coletadas juntamente com os sedimentos da região em julho de 2011. Os sedimentos superficiais foram coletados através de um barco do tipo traineira, por meio do equipamento "Van-Veen" (tipo busca-fundo). As estações de amostragem daquele estudo foram previamente marcadas na carta náutica, com as coordenadas geográficas obtidas através de GPS, Figura 15. Após a coleta, as conchas foram mantidas em sacolas plásticas, juntamente com o sedimento dos pontos amostrais, devidamente identificadas, e enviadas ao Laboratório Geológico de Processamento de Amostras – LGPA (UERJ).

Figura 15 – Mapa com os pontos de coleta

Fonte: O autor, 2016.

4.2 PREPARAÇÃO DAS AMOSTRAS

As amostras foram separadas dos sedimentos por catação manual, o material aderido à superfície das conchas foi removido por escovação simples, após, as amostras passaram pelo ultrassom para remoção de qualquer partícula que ainda poderia estar aderida a superfície da concha. Dentre as conchas coletadas, algumas encontravam-se desgastadas pelos processos físicos e químicos, impostos pelo intemperismo do meio; algumas apresentavam rachaduras, outras partes quebradas e/ou buracos. Dessa forma, somente as conchas que encontravam-se inteiras, sem danos na superfície foram separadas e selecionadas para a identificação das espécies (Tabela 1).

Figura 16 - Exemplos de algumas das conchas analisadas

FONTE: O AUTOR, 2016

	TABELA 1 - Pontos de o	coleta, comprimento, l	argura e espessura da	as conchas ((continua)
--	------------------------	------------------------	-----------------------	--------------	------------

MOLDE	PONTO	ESPÉCIE	COMPRIMENTO	LARGURA	ESPESSURA
			(mm)	(mm)	(mm)
1	MAN 30	Glycymeris undata	2,3	2,8	0,3
2	MAN 18	Glycymeris undata	2,4	2,6	0,3
3	MAN 30	Pitar fulminatus	1,8	2,0	0,1
4	MAN 06	Pitar fulminatus	1,4	1,8	0,2
5	MAN 06	Pitar fulminatus	1,5	1,8	0,2
6	MAN 13	Cyclinella tennuis	1,5	1,3	0,3
7	MAN 06	Cyclinella tennuis	1,9	1,6	0,3
8	MAN 30	Corbula cubaniana	1,9	2,8	0,2
9	MAN 49	Corbula cubaniana	2,0	3,0	0,2
10	MAN 22	Corbula cubaniana	2,0	3,0	0,2
11	MAN 30	Tellina petitiana	1,3	2,3	0,1
12	MAN 65	Tellina petitiana	2,1	3,5	0,1

MOLDE	PONTO	ESPÉCIE	COMPRIMENTO	LARGURA	ESPESSURA
13	MAN 06	T. muricatum	2,5	2,6	0,1
14	MAN 06	T. muricatum	1,8	2,0	0,3
15	MAN 08	F. vilardeboana	2,9	3,0	0,2
16	MAN 16	F. vilardeboana	2,2	2,2	0,2
17	MAN22	A. brasiliana	2,1	2,5	0,1
18	MAN 15	Chione paphia	1,1	1,7	0,2
19	MAN 24	Chione paphia	1,6	2,0	0,2
20	MAN 67	Chione paphia	2,0	2,8	0,4
21	MAN 50	M. janeiroensis	2,0	2,7	0,3
22	MAN 50	Tivela mactroides	2,5	3,4	0,3
23	MAN 06	Pitar circinatus	2,7	2,5	0,2
24	MAN 06	Pitar circinatus	1,4	1,8	0,2
25	MAN 40	Pitar circinatus	8,7	10,2	1,0

TABELA 1 - Pontos de coleta, comprimento, largura e espessura das conchas (conclusão)

4.3 TAXONOMIA DAS ESPÉCIES

A identificação das espécies utilizadas foi baseada nas características morfológicas da concha de acordo com a chave taxonômica apresentada por Rios, 1974.

Anadara brasiliana, (Figura 17).

Classe Bivalvia Subclasse Pteriomorphia Ordem Arcoida Superfamília Arcoidea Família Arcidae Gênero Anadara Anadara brasiliana (Lamarck, 1819)

Figura 17 - Anadara brasiliana

Fonte: O autor, 2016.

Glycymeris undata, (Figura 18).

Classe Bivalvia Subclasse Pteriomorphia Ordem Arcoida Superfamília Arcoidea Família Glycymerididae Gênero *Glycymeris Glycymeris undata* (Linnaeus, 1758)

Fonte: O autor, 2016.

Trachycardium muricatum, (Figura 19).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Cardiodea Família Cardiidae Subfamília Trachycardiiae Gênero *Trachycardium Trachycardium muricatum* (Linnaeus, 1758)

Figura 19 - Trachycardium muricatum

Fonte: O autor, 2016.

Semele purpurascens, (Figura 20).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Tellinoidea Família Senelidae Gênero Semele Semele purpurascens (Gmelin, 1791)

Figura 20 - Semele purpurascens

Fonte: O autor, 2016.

Tellina petitiana, (Figura 21).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Tellinoidea Família Tellidae Subfamília Tellininae Gênero *Tellina Tellina petitiana* (d'Orbigny, 1846)

Fonte: O autor, 2016.

Mactra janeiroensis, (Figura 22).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Mactroidea Família Mactridae Gênero Mactra Mactra janeiroensis (E. A. Smith, 1915)

Figura 22 - Mactra janeiroensis

Fonte: O autor, 2016.

Chione paphia, (Figura 23).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Veneroidea Família Veneridae Subfamília Chioninae Gênero Chione Chione paphia (Linnaeus, 1767)

Fonte: O autor, 2016.

Tivela mactroides, (Figura 24).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Veneroidea Família Veneridae Subfamília Meretricinae Gênero *Tivela Tivela mactroides* (Born, 1778)

Figura 24 - Tivela mactroides

Fonte: O autor, 2016.

3.3.9) Pitar fulminatus, (Figura 25).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Veneroidea Família Veneridae Subfamília Pitarinae Gênero *Pitar Pitar fulminatus* (Menke, 1828)

Fonte: O autor, 2016.

Pitar circinatus, (Figura 26).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Veneroidea Família Veneridae Subfamília Pitarinae Gênero Pitar Pitar circinatus (Born, 1778)

Figura 26 - Pitar circinatus

Fonte: O autor, 2016.

Cyclinella tenuis, (Figura 27).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Veneroidea Família Veneridae Subfamília Cyclininae Gênero Cyclinella Cyclinella tenuis (Récluz, 1852)

Fonte: O autor, 2016.

Felaniella vilardeboeana, (Figura 28).

Classe Bivalvia Subclasse Heterodonta Ordem Veneroida Superfamília Ungulinoidea Família Ungulinidae Gênero *Felaniella Felaniella vilardeboeana* (d'Orbigny, 1846)

Figura 28 - Felaniella vilardeboeana

Fonte: O autor, 2016.

Corbula cubiniana, (Figura 29).

Classe Bivalvia Subclasse Myoida Ordem Myoidea Superfamília Corbuloidae Família Corbulidae Gênero Corbula Corbula cubiniana (d'Orbigny, 1853)

Fonte: O autor, 2016.

4.4 MONTAGEM DO MOLDE DE RESINA

Para a realização das análises, foi necessário fixar as conchas num molde de resina epóxi, de modo que não as danificassem durante o corte transversal no eixo central da concha. O corte foi realizado para expor as camadas da concha, local onde foram realizadas as análises, (Figura 30). Após o corte, as seções fatiadas foram lixadas e polidas para a realização de imagens, geradas a partir da lupa ótica com aumento de 10x.

Figura 30 - Etapas para montagem do molde

Fonte: O autor, 2016.

4.5 LA-ICP-MS

As análises das composições isotópicas de chumbo no interior das conchas foram realizadas no MULTILAB - Laboratório de analises isotópicas da Faculdade de Geologia/ Instituto de Física da UERJ, através da técnica LA-ICP-MS, utilizando o espectrômetro de massa Neptune com plasma acoplado e Laser Photo 193nm, (Figura 31).

Figura 31 - LA-ICP-MS

Legenda: A) Espectrômetro de massa Neptune e a câmara do plasma; B) Laser Photo 193nm. Fonte: O autor, 2016.

O sistema LA-ICP-MS utiliza-se de uma técnica de alta precisão na realização de microanálises químicas, a técnica é aplicada em várias áreas do conhecimento, como por exemplo: biologia, química, geologia, medicina, em estudos ambientais, entre outras. A alta capacidade do sistema LA-ICP-MS em detectar multi-radionuclídeos é capaz de caracterizar os elementos em concentrações da ordem de ppb, em diversas matrizes ambientais (ALENCAR, 2012).

A análise inicia-se com o feixe de laser incidindo verticalmente sobre um ponto qualquer na superfície da amostra, nesse trabalho, as análises ocorreram no interior das distintas camadas formadoras da concha. As partículas volatizadas pelo laser são transportadas por um sistema à vácuo da câmara do laser até o plasma, através de bombeamentos do gás (hélio). Na câmara do plasma, ocorre a ionização das partículas em altíssima temperatura, onde ocorre a combustão do gás argônio, o qual é injetado no compartimento do plasma por meio de outra bobina a vácuo. A elevada temperatura do plasma (10000 kelvin) é capaz de ionizar completamente as partículas extraídas da amostra, de forma que os íons são separados individualmente através da fricção térmica entre as partículas.

Após a ionização, na câmara do plasma, os íons são carreados para o espectrômetro de massa, onde a nuvem de íons expande-se naturalmente devido a ação de forças eletrostáticas repulsivas entre os cátions e ao vácuo no interior do espectrômetro (NIU et al., 1996). Para a organização da nuvem de íons, lentes localizadas estão posicionadas numa região anterior aos detectores de massa, elas transformam a nuvem de íons em um feixe único com o trajeto linear. Assim, o feixe de íons atravessa o compartimento do campo magnético num fluxo organizado, ao atravessarem o setor magnético, os íons são atraídos por forças eletromagnéticas e obrigados a traçarem rotas semicirculares. Cada íon percorre o campo magnético traçando um raio de curvatura que varia de acordo com a massa e carga. Os íons mais leves apresentam raios maiores, enquanto os mais pesados deslocam-se com raios menores ao atravessarem o campo eletromagnético. Após atravessarem o setor do magnético, os íons chegam no destino final, nos detectores de massa, onde é realizada a contagem por segundo dos íons "desejados" (pré-determinados através da configuração do instrumento). Existe ainda no instrumental do espectrômetro uma função conhecida como multiplicadores de elétrons, também denominados de "Faraday collectors", os quais são espelhos alinhados com a capacidade de melhorar a precisão do equipamento, os multiplicadores de elétrons são utilizados em amostras com baixa concentração dos elementos desejados, Figura 32. Após a contagem dos íons por segundos, os dados adquiridos são transferidos para o computador e lançados numa planilha do Microsoft Excel, onde são tratados e corrigidos.

Figura 32 – Esquema ilustrativo dos componentes e do sistema LA-ICP-MS.

FONTE: https://www.termofisher.com

Entre as variáveis que podem alterar o comportamento dos íons que são extraídos da amostra estão: os parâmetros de configuração do laser e a temperatura do plasma. A configuração desses parâmetros de forma inadequada pode provocar variações no registro do sinal, alterando o resultado final do experimento. As partículas com diferentes massas atômicas, no momento da ablação do laser ou durante a ionização no interior da câmara do plasma, interagem entre si, esse processo é denominado como fracionamento de massa. O fracionamento entre partículas de diferentes massas provoca a perda de elétrons ao se chocarem uma com as outras. Dois tipos de fracionamento são possíveis, o fracionamento termodinâmico e o fracionamento cinético, (JOCHUM et al., 2012). O fator de fracionamento possui baixo valor, assim, os cálculos de correção são discriminados em ‰, e exigem sua correção a partir de um padrão de referência.

4.6 PADRÃO

O padrão utilizado foi NIST 612, "*National Institute of Standrdats*", no estado sólido. O padrão NIST 612 é amplamente utilizado em trabalhos ambientais cujas análises determinaram a composição isotópica de chumbo, através da técnica LA-ICP-MS, em diversas matrizes ambientais (JOCHUM et al., 2006). Diversos estudos utilizaram o NIST 612 para determinar a concentração de chumbo em matizes carbonáticas, tais como: VANDER PUTTEN et al., 2000 e LAZARETH et al., 2003, conchas de bivalves; SINCLAIR et al., 1998, LINSLEY et al., 2000, SWART e GROTTOLI, 2003, em corais; e VERHEYDEN et al., 2000 e FINCH et al., 2001, em estalagmites.

4.7 PARÂMETROS DO LASER

Lasers do tipo "*Excimer*" são amplamente utilizados nos sistemas LA-ICP-MS, o comprimento de onda menor utilizado nesses lasers, resulta em melhores resoluções espaciais, menores efeitos de fracionamento e melhor precisão analítica. Segundo, JOCHUM et al., 2012, as análises em matrizes carbonáticas devem ser feitas com o comprimento de onda em 193nm, dessa forma os efeitos provocados pelo fracionamento são minimizados.

A otimização das condições operacionais do laser depende de uma série de ajustes dos parâmetros chaves, tais como: a energia do laser, taxa de repetição, foco, modo de operação e fluxo de gás. Neste trabalho, todos estes foram ajustados constantemente durante as análises, visando atingir a melhor estabilidade e eficiência no registro dos sinais (íons/s) em cada perfil amostral. Foram avaliadas as respostas das variações individuais de cada parâmetro, bem como aquelas resultantes de variações simultâneas dos diversos parâmetros considerados, até serem obtidas as melhores condições operacionais. O modo operacional do laser escolhido foi o modo de análises pontuais.

Diferentes intensidades de energia do laser (30% a 60%) em combinação com diferentes taxas de repetição foram testadas. A intensidade da energia em 50% com a taxa de repetição variando entre 10 Hz e 9 Hz, forneceram os melhores resultados em relação à estabilidade dos sinais (íons/s). As condições ótimas para o tamanho da cratera, aberta na

superfície da amostra através da ação do laser, variam de acordo com a amostra, diferentes tamanhos da cratera foram testados em cada concha, os melhores resultados foram obtidos entre 50 e 110µm (Tabela 2):

1 abela 2 = 1 arallellos 0	leracionais para o laser
Instrumento	Photon Machines Analyte G2
Frequência	6 – 10 Hz
Energia do laser	30.0 - 60.0%
Diâmetro da cratera	50 - 110µm
Tempo total da ablação	40s
Fluxo - He (MFC 1)	0.550 L/min
Fluxo – He (MFC 2)	0.200 L/min

Tabela 2 – Parâmetros operacionais para o laser

4.8 PARÂMETROS DO ICP-MS

As configurações dos parâmetros do espectrômetro também podem influenciar no registro final dos dados, dessa forma os ajustes necessários para estabilização do sinal foram calibrados a partir de medidas realizadas no padrão de referência (NIST 612) durante as análises de cada perfil amostral.

Tabela 3 - Parâmetros operacionais para o ICP-MS

Instrumento	Neptune (ThermoFinnigan)
Potência	900W
Fluxo de gás	Ar resfriador: 15.00 L/min
	Ar auxiliar: 0.70 L/min
	Ar transporte: 0.800 L/min
Extração	-10000 V
Modo de análise	Estático
Detecção	Coletores "Faraday"
Alinhamento da tocha	
Posição (X)	-1.010 mm
Posição (Y)	-2.900 mm
Posição (Z)	-2.230 mm
Aquisição de dados	
Tempo de integração	1,049 s
Numero de integrações	1
Duração da análise pontual	40s

4.9 TRATAMENTO DOS DADOS

O tratamento dos dados foi realizado através do procedimento conhecido na literatura como planilha "*branket*", a qual foi desenvolvida no programa Excel, na planilha são realizadas as correções e o tratamento dos "dados brutos" obtidos pelo espectrômetro. Os dados foram inseridos na planilha na seguinte sequência, formando um perfil amostral:

- a) leitura do branco analítico pela primeira vez;
- b) primeira leitura no padrão NIST 612;
- c) cinco análises pontuais na amostra desconhecida;
- d) leitura do branco pela segunda vez;
- e) mais cinco análises pontuais na amostra;
- f) segunda leitura no padrão NIST 612;
- g) terceira leitura do branco.

A Planilha realiza a correção da média obtida para o branco, além disso, os valores medidos no padrão são comparados com os valores de referência, citado na literatura, para a realização do cálculo do fator de correção. O fator de correção é aplicado nas dez análises pontuais realizadas na amostra a fim de corrigir o erro associado ao instrumento (Figura 33).

Figura 33 - Esquema ilustrativo da planilha "Branket"

A precisão na determinação das razões isotópicas realizada pelo sistema LA-ICP-MS está correlacionada com a dispersão dos íons constituintes do feixe iônico, se o feixe iônico for composto por íons de massas diferentes, os mais leves são desviados com maior facilidade enquanto os mais pesados são mantidos, preferencialmente, no feixe iónico (HEUMANN et al., 1998). A melhor forma para corrigir a discriminação de massas é através de um padrão de referência com composição isotópica certificada. O padrão deve ser analisado nas mesmas condições que a amostra e conter os isótopos de interesse os quais pretende-se determinar, nesse trabalho foi utilizado o padrão NIST 612. A fim de manter as mesmas condições amostrais durante o experimento, o cálculo do fator de correção foi efetuado para cada perfil amostral, durante as análises do perfil, da seguinte forma:

Medido – valor médio, a partir das 2 medidas no padrão, corregido pelo branco.
 Conhecido – reportado na literatura.

Utiliza-se o fator de correção para a calibração dos dados na seguinte equação:

valor medido - valor registrado pelo equipamento.

Além disso, a determinação da composição isotópica de chumbo pelo espectrômetro está sujeita a interferência isobárica do isótopo 204 do mercúrio (204 Hg) cujo sinal é amplificado, podendo originar uma imprecisão sistemática na contagem do 204 Pb (JOCHUM et al., 2012). A interferência provocada pelo mercúrio pode ser corrigida através da contagem do isótopo 202 Hg, assumindo uma razão constante entre os isótopos de mercúrio (204 Hg e 202 Hg = 0,23), da seguinte forma:

$${}^{204}Pb = I ({}^{204}Pb) - [I ({}^{202}Hg) x Abundância ({}^{204}Hg)/Abundância ({}^{202}Hg)]$$
(3) onde.

Abundância (204 Hg)/Abundância (202 Hg) = 0,23

I – Intensidade de um isótopo específico

Por último, deve-se levar em consideração a correção do mercúrio presente nos gazes utilizados pelo sistema: tanto no argônio (utilizado no compartimento do plasma), quanto no hélio (utilizado no transporte do material vaporizado da câmara de ablação para o espectrômetro). Dessa forma, deve-se subtrair a interferência desses valores através da leitura do branco e desconta-la das análises. Por conta da baixa abundancia do ²⁰⁴Pb, as razões isotópicas normalizadas com ²⁰⁴Pb apresentam valores com maior grau de incerteza, devido a interferência do ²⁰⁴Hg.

Os sinais registrados (ions/s), em um determinado ponto amostral, foram calculados através de uma média aritmética obtida a partir de 40 análises (valores medidos) efetuadas pelo espectrômetro. Essa média representa a intensidade média do sinal registrada (ions/s - isótopo de interesse) do ponto analisado durante a aquisição dos dados do ponto amostral, ao longo de 40 segundos. Assim, o valor referente a intensidade de cada isótopo (de cada ponto amostral) representa a média da variação da intensidade desses 40 valores obtidos, ao longo de 40 segundos. O valor do desvio padrão de cada ponto analisado (para cada isótopo) foi calculado através da variância dos 40 valores registrados durante a aquisição dos dados. Vale ressaltar que a intensidade do sinal varia naturalmente em cada ponto amostral, de acordo com a quantidade de chumbo presente na amostra. Sendo assim, o valor do desvio padrão varia em cada ponto de acordo com a concentração presente em cada ponto amostral. O cálculo do desvio padrão foi realizado através da planilha "Branket", no Excel, através desse refinamento dos dados permitiu-se retirar da curva amostral as intensidades extremas (valores além do desvio padrão) registradas em cada ponto.

A Figura 34 ilustra o comportamento dos sinais registrados (razões isotópicas) em um ponto amostral, ao longo da janela de aquisição dos dados (concha 2, Ponto 05 – perfil A). Na mesma Figura 34, nota-se em vermelho os sinais descartados nesse ponto, cujos valores ultrapassaram o valor do desvio padrão do ponto.

Figura 34 - Comportamento dos sinais durante aquisição dos dados: Concha (2) - Ponto 05A

Legenda: Em azul os sinais registrados para as razões isotópicas obtidos na amostra, durante a janela de 40 segundos de aquisição dos dados; em vermelho as intensidades descartadas cujos sinais extrapolaram o valor do desvio padrão do ponto. Fonte: O autor, 2016.

O erro estimado para cada perfil foi calculado a partir da comparação entre os valores das razões isotópicas medidas no padrão (NIST 612), pelo espectrômetro, e o valor certificado na literatura. Durante a análise de cada perfil amostral, foram efetuadas duas medidas no padrão, de modo a manter as mesmas condições operacionais, dessa forma, o erro amostral foi obtido a partir da média aritmética entre as duas medidas realizadas no padrão, a qual subtraiu-se o valor certificado na literatura, expresso em percentagem. O erro calculado para as razões isotópicas de cada perfil está disponível no ANEXO I, juntamente com os valores obtidos para o fator de correção de cada perfil analisado. A equação a seguir demonstra como foi realizado o cálculo do erro instrumental:

$$Erro (\%) = [1 - (Medido/Conhecido)] \times 100$$
(4)
onde,

Medido – valor médio, (1^a medida + 2^a medida)/2; afetado pelo branco, a correção do branco foi considerada e subtraída dos valores medidos no padrão.

Conhecido - reportado pelo fabricante do padrão.

Valores de referência para as razões isotópicas de chumbo do padrão NIST 612:

a) 206/207: 1.09
b) 208/206: 2.16
c) 208/204: 36.94
d) 207/204: 15.50
e) 206/204: 17.05

A Figura 35 ilustra o comportamento do sinal medido no padrão, para as razões isotópicas de chumbo do NIST 612 medido pelo espectrômetro, durante as análises do Perfil (A) da concha (2). Nota-se destacado em vermelho, o valor certificado pela literatura.

Figura 35 – Comportamento dos sinais medidos no padrão (NIST 612) durante a analise do Perfil (A) – Concha (2)

Legenda: Em vermelho os valores de referência do padrão, em azul os valores medidos pelo espectrômetro, durante 40 segundos, uma medida por segundo. Concha 2, Perfil (A), erro instrumental calculado a partir do padrão:

206/207: 1.3%; **208/206:** 2.4%; **208/204:** 6.7%; **207/204:** 10.9%; **206/204:** 9.3% Fonte: O autor, 2016.

5 RESULTADOS

Nessa seção são apresentados os resultados obtidos em relação a composição isotópica de chumbo registrados no interior de vinte e cinco conchas analisadas. A discussão dos resultados foi organizada em tabelas, gráficos e imagens; os dados foram obtidos pontualmente, distribuídos em perfis ao longo das camadas formadoras da concha. O número de perfis realizados por concha variou da seguinte forma: cinco conchas com dois perfis amostrais, dezessete conchas com três perfis, uma concha com quatro perfis e duas conchas com cinco perfis, em cada perfil foram realizados 10 pontos amostrais. Os pontos amostrais são caracterizados pelas crateras abertas na concha, no local exato onde o feixe de laser incidiu sobre a área analisada. Os resultados de cada perfil foram discutidos graficamente a partir do histograma ²⁰⁶Pb/²⁰⁷Pb juntamente com o diagrama ²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb. As razões normalizadas através do ²⁰⁴Pb, apesar de reportadas, não foram incluídas na discussão dos resultados por apresentarem dados menos precisos, as incertezas geradas no registro do ²⁰⁴Pb foram explicadas anteriormente.

A identificação das possíveis assinaturas isotópicas ocorreu através da correlação dos valores obtidos para as razões ²⁰⁶Pb/²⁰⁷Pb *vs.* ²⁰⁸Pb/²⁰⁶Pb, a partir da análise do histograma ²⁰⁶Pb/²⁰⁷Pb e do gráfico ²⁰⁶Pb/²⁰⁷Pb *vs.* ²⁰⁸Pb/²⁰⁶Pb. Primeiramente, os resultados foram inseridos no histograma (²⁰⁶Pb/²⁰⁷Pb), onde os dados foram agrupados em intervalos, cujo limite entre um grupo e outro foi estabelecido a partir da mudança da inclinação da curva amostral. Com os grupos definidos (a partir do comportamento da curva no histograma ²⁰⁶Pb/²⁰⁷Pb) os dados foram correlacionados ao gráfico ²⁰⁶Pb/²⁰⁷Pb *vs.* ²⁰⁸Pb/²⁰⁶Pb. A partir dessa correlação entre os dois gráficos, pode-se verificar se os grupos identificados no histograma (²⁰⁶Pb/²⁰⁷Pb), permaneceram agrupados na mesma área no segundo gráfico (²⁰⁶Pb/²⁰⁷Pb *vs.* ²⁰⁸Pb/²⁰⁶Pb), caracterizando assim uma mesma composição isotópica, e foi considerado como uma assinatura isotópica. Caso apresentaram composições isotópicas diferentes, ou seja, quando os grupos identificados no histograma (²⁰⁶Pb/²⁰⁷Pb *vs.* ²⁰⁸Pb/²⁰⁶Pb), não foram considerados uma assinatura isotópica e sim uma mistura de componentes.

Os dados obtidos em cada ponto amostral foram determinados a partir da intensidade dos sinais registrados pelo espectrômetro (íons/s) para os quatro isótopos de interesse. A

unidade utilizada para mensurar o sinal foi descrita em cps (contagem por segundo dos íons), esta reporta a intensidade do fluxo de íons que chegam aos detectores de elétrons, no interior do espectrômetro. Para facilitar a interpretação dos resultados, os dados referente a intensidade dos isótopos (em cps), foram plotados em gráficos superpostos juntamente com a imagem do perfil correspondente.

Interpretando a variação da intensidade dos sinais (cps) é possível observar a variação na concentração de chumbo ao longo da concha. A variação da intensidade do sinal reporta a variação da quantidade de íons que chegam aos detectores de elétron, consequentemente, reporta a variação da concentração de chumbo. A concentração de cada isótopo de chumbo dos pontos amostrais foram estabelecidas em cps, não foi possível estimar o valor da concentração de chumbo nas amostras em ppm, uma vez que os cálculos necessários para a conversão de cps em ppm não foram realizados.

Com o intuito de observar se ocorre variação no sinal associada a mudança de camada, os pontos amostrais foram realizados em distintas camadas, com os pontos amostrais realizados bem próximos entre si. Para essa discussão, foi escolhido o ²⁰⁸Pb, uma vez que a proporção observada entre os isótopos manteve-se constante durante as análises ao longo do experimento.

As amostras foram organizados por espécies, e os dados adquiridos representam a composição isotópica dos pontos amostrais analisados. Primeiramente, os valores foram apresentados em uma tabela contendo as seguintes razões isotópicas: ²⁰⁸Pb/²⁰⁴Pb; ²⁰⁷Pb/²⁰⁴Pb; ²⁰⁶Pb/²⁰⁴Pb; ²⁰⁸Pb/²⁰⁶Pb; e ²⁰⁶Pb/²⁰⁷Pb. Na sequência da tabela, segue as imagens com a localização dos perfís e das crateras. Após, discute-se o histograma ²⁰⁶Pb/²⁰⁷Pb juntamente com o diagrama ²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb, e por ultimo, o gráfico com o registro da intensidade dos sinais, em cps, de cada perfíl.

Tabela 4 – Composição isotópica determinada nos perfis da concha (1)					
PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	43.402	18.254	22.942	1.896	1.258
02A	44.593	18.801	23.577	1.896	1.254
03A	43.254	18.121	22.813	1.902	1.259
04A	43.964	18.639	23.273	1.892	1.250
05A	43.698	18.400	23.180	1.891	1.259
06A	46.739	19.814	24.690	1.896	1.246
07A	44.926	18.881	23.799	1.895	1.260
08A	43.914	18.314	23.402	1.881	1.278
09A	46.225	19.456	24.366	1.896	1.256
10A	43.057	18.151	22.855	1.890	1.257
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	56.567	25.712	29.410	1.923	1.146
02B	55.029	25.234	28.908	1.897	1.147
03B	54.683	25.001	28.411	1.922	1.133
04B	54.352	24.974	28.386	1.914	1.138
05B	58.934	26.958	31.819	1.845	1.185
06B	52.879	24.354	28.683	1.844	1.171
07B	59.086	27.270	33.117	1.789	1.210
08B	58.117	26.732	31.552	1.852	1.176
09B	58.655	27.045	32.951	1.806	1.206
10B	53.132	24.707	29.404	1.810	1.197
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	43.812	19.034	23.464	1.870	1.234
02C	43.353	18.831	23.312	1.861	1.239
03C	44.099	19.107	23.645	1.865	1.238
04C	44.770	19.417	23.977	1.864	1.235
05C	43.721	18.943	23.364	1.868	1.236
06C	46.709	20.498	25.045	1.867	1.229
07C	45.105	19.550	24.302	1.857	1.241
08C	44.088	19.022	23.573	1.872	1.239
09C	44.933	19.535	24.239	1.855	1.240
10C	43.849	19.069	23.583	1.861	1.237

A composição isotópica obtida na primeira concha analisada está descrita na Tabela 4.

A primeira amostra, pertence a espécie *Glycymeris undata*, duas camadas formam a concha, a camada externa e a interna, (Figura 36).

Figura 36 – Desenho esquemático da concha de *Glycymeris undata* e as duas camadas

Fonte: O autor, 2016.

O perfil (A), realizado no centro da concha teve os pontos amostrais distribuídos nas duas camadas; enquanto que o perfil (B), somente na camada externa; e o perfil (C), nas duas camadas. Ao todo foram realizados 30 pontos amostrais na primeira amostra, (Figura 37).

Figura 37 - Localização dos perfis e crateras na concha (1)

Fonte: O autor, 2016.

Os valores obtidos na concha (1), para a razão ²⁰⁶Pb/²⁰⁷Pb, variaram de 1,133 a 1,278 enquanto que para a razão ²⁰⁸Pb/²⁰⁶Pb, entre 1,789 e 1,923, Figura 38. Quando os dados foram plotados no histograma ²⁰⁶Pb/²⁰⁷Pb, nota-se que cada perfil apresentou um comportamento. Através da interpretação do histograma, observa-se cinco grupos de assinaturas isotópicas, distribuídos entre os três perfis amostrais, os quais foram identificados nos seguintes intervalos da razão ²⁰⁶Pb/²⁰⁷Pb, de acordo com a variação da inclinação da curva amostral (ou da linha que conecta os pontos amostrais):

A1: 1,246 – 1,260 B1: 1,133 – 1,147 C1: 1,229 – 1,241 B2: 1,171 – 1,185 B3: 1,197 – 1,210

Legenda: (1) 206 Pb/ 207 Pb; (2) 206 Pb/ 207 Pb x 208 Pb/ 206 Pb. Fonte: O autor, 2016.

Quando os valores foram correlacionados com o gráfico ²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb observa-se que os grupos identificados anteriormente no histograma reportaram distintas composições isotópicas, possivelmente representando distintas famílias de assinaturas. No perfil (B), nota-se uma correlação linear entre os três agrupamentos de assinaturas reportados neste perfil. Este comportamento linear observado no perfil (B) deve representar a mistura de componentes, em proporções variadas, com diferentes razões isotópicas, provenientes de distintas fontes (MONNA et al., 1997).

A Figura 39 reporta a intensidade dos sinais por segundo (cps) registrados nos perfis da primeira concha. O perfil (B) apresentou a maior variabilidade na intensidade dos sinais, entre 15431 e 75762 cps registrados para o isótopo ²⁰⁸Pb; no perfil (C), os pontos amostrais

ocorreram nas duas camadas, observou-se que na camada externa ocorreram os sinais mais intensos, com valor máximo em 50949 (cps - ²⁰⁸Pb), enquanto a camada interna, registrou máximo em 15665 cps para o mesmo isótopo. O mesmo comportamento foi observado no perfil (A), sinais mais intensos na camada externa, com valor máximo em 29459 cps para o ²⁰⁸Pb.

Figura 39 – Contagem por segundo dos isótopos de chumbo: concha (1)

Fonte: O autor, 2016

Os valores obtidos para a composição isotópica na segunda amostra estão descritos na Tabela 5, foram realizados 30 pontos amostrais, distribuídos em 3 perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	36.651	16.211	18.400	1.988	1.154
02A	26.885	12.013	13.578	1.994	1.164
03A	27.756	12.279	14.158	1.969	1.144
04A	32.398	15.128	17.157	2.031	1.116
05A	31.374	13.738	15.699	1.974	1.147
06A	24.899	11.143	12.416	1.983	1.145
07A	26.743	11.918	13.400	2.002	1.129
08A	28.078	12.335	14.179	2.018	1.121
09A	27.794	12.359	14.099	1.993	1.136
10A	28.588	12.403	14.066	1.999	1.130
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	40.908	18.517	20.694	1.996	1.127
02B	36.253	16.019	18.120	1.997	1.142
03B	43.623	19.317	21.793	2.025	1.137
04B	33.077	14.657	16.485	2.006	1.119
05B	38.916	17.182	19.123	2.025	1.117
06B	39.134	17.346	19.466	2.010	1.110
07B	32.513	14.273	16.309	1.990	1.129
08B	47.156	21.010	23.761	1.990	1.135
09B	37.488	16.515	18.798	2.004	1.127
10B	43.995	19.686	22.250	2.002	1.132
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	40.223	17.623	19.924	2.039	1.136
02C	34.778	15.112	17.340	1.995	1.168
03C	32.727	14.332	16.310	2.052	1.141
04C	32.775	14.678	16.292	1.998	1.131
05C	34.566	15.373	17.162	2.026	1.118
06C	46.879	20.541	23.293	2.009	1.128
07C	38.765	17.204	19.080	2.028	1.123
08C	35.533	15.634	17.723	2.010	1.167
09C	30.531	13.528	15.158	2.017	1.128
10C	38.645	17.066	19.159	2.006	1.119

Tabela 5 – Composição isotópica determinada nos perfis da concha (2)

A segunda concha analisada também pertence a espécie *Glycymeris undata*. O perfil (A) foi realizado na camada externa; o perfil (B) na camada externa; e o perfil (C) na camada interna (Figura 40).

Figura 40 - Localização dos perfís e crateras na concha (2)

Fonte: O autor, 2016.

Os valores encontrados para a razão ²⁰⁶Pb/²⁰⁷Pb nessa amostra variaram de 1,110 a 1,168; e para a razão ²⁰⁸Pb/²⁰⁶Pb variaram de 1,969 a 2,058; Figura 41. Através da interpretação do histograma ²⁰⁶Pb/²⁰⁷Pb, observa-se que os dados, organizados de acordo com a inclinação da curva amostral obtida para cada perfil, agruparam-se nos seguintes intervalos:

A1 : 1,116 – 1,121	B1 : 1,110 – 1,119	C1 : 1,118 – 1,123
A2 : 1,129 – 1,130	B2 : 1,127 – 1,142	C2 : 1,128 – 1,131
A3 : 1,144 − 1,154		C3 : 1,136 – 1,141
		C4 : 1,167 – 1,168

Figura 41 - Assinaturas isotópicas registradas na concha (2)

Através da análise dos gráficos acima, nota-se que os grupos identificados no histograma (206Pb/207Pb): A1, B1 e C1, coincidiram na mesma área do segundo gráfico (²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb), possivelmente, caracterizam uma mesma assinatura isotópica comum aos três. Enquanto que os grupos A2, B2 e C2, reportaram outra composição isotópica. O grupo C4 associou-se a um ponto amostral do perfil (A), enquanto que os grupos A3 e C3, provavelmente representam outras fontes de poluição.

A intensidade dos sinais registrados nos perfís da segunda concha, é apresentada na Figura 42. O perfil (B) apresentou os sinais mais intensos (valor máximo de 3868 cps - ²⁰⁸Pb), o perfil (A) reportou valor máximo de 2733 cps - ²⁰⁸Pb; e o perfil (C), 2891 cps - ²⁰⁸Pb.

Fonte: O autor, 2016.

Os valores referentes a composição isotópica obtidos nos perfis da concha (3) estão descritos na Tabela 6. Devido há falhas operacionais, no perfil (D) foram realizados 5 pontos.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	43.266	19.219	22.658	1.911	1.180
02A	43.677	19.332	22.881	1.913	1.184
03A	44.287	19.506	23.199	1.912	1.187
04A	43.662	19.355	23.009	1.898	1.193
05A	43.260	19.041	22.724	1.906	1.195
06A	45.815	20.052	23.998	1.911	1.196
07A	43.274	19.012	22.738	1.904	1.197
08A	45.559	19.852	23.918	1.901	1.208
09A	45.452	19.996	23.843	1.908	1.193
10A	43.263	19.022	22.783	1.900	1.199
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	44.932	19.670	23.863	1.882	1.213
02B	49.960	21.922	26.491	1.887	1.203
03B	44.394	19.666	23.666	1.876	1.206
04B	47.175	20.670	24.860	1.899	1.200
05B	40.690	17.892	21.593	1.888	1.207
06B	43.495	19.145	23.220	1.877	1.211
07B	40.626	17.822	21.553	1.889	1.210
08B	42.542	18.547	22.309	1.910	1.202
09B	39.327	17.355	20.905	1.882	1.207
10B	43.115	19.015	22.953	1.885	1.205
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	45 594	19 685	24 131	1 890	1 226
02C	44.589	19.231	23.573	1.892	1.226
03C	44.632	19.188	23.563	1.897	1.227
04C	44.182	19.078	23.315	1.898	1.221
05C	46.730	20.094	24.588	1.902	1.224
0.0	17 019	20 722	25 280	1 894	1.222
06C	4/.918	20.733	23.209	1.0/.	. —
06C 07C	47.918 45.357	20.733 19.506	23.289	1.894	1.228
06C 07C 08C	47.918 45.357 47.822	19.506 20.511	23.957 25.252	1.894 1.891	1.228 1.234
06C 07C 08C 09C	47.918 45.357 47.822 47.350	19.506 20.511 20.620	23.957 25.252 24.991	1.894 1.891 1.894	1.228 1.234 1.216

Tabela 6 – Composição isotópica determinada nos perfis da concha (3)
PERFIL D	208/204	207/204	206/204	208/206	206/207
01D	44.781	19.367	23.723	1.891	1.222
02D	49.313	20.940	25.887	1.899	1.229
03D	42.619	18.336	22.473	1.912	1.224
04D	33.718	14.033	17.598	1.905	1.258
05D	46.460	19.958	24.637	1.881	1.239
PERFIL E	208/204	207/204	206/204	208/206	206/207
01E	41.276	18.047	21.623	1.914	1.196
02E	40.519	17.707	21.070	1.923	1.193
03E	44.011	19.357	22.937	1.920	1.188
04E	41.929	18.360	21.938	1.916	1.193
05E	41.398	18.121	21.602	1.917	1.193
06E	42.573	18.550	22.229	1.916	1.198
07E	41.910	18.232	21.798	1.923	1.196
08E	42.305	18.547	22.000	1.923	1.187
09 E	42.117	18.387	21.892	1.924	1.192
10E	41.558	18.137	21.612	1.924	1.191

Figura 43 - Desenho esquemático ilustrando a concha de Pitar fulminatus e as três camadas

Fonte: O autor, 2016.

A espécie *Pitar fulminatus* possui três camadas formando a concha: interna, intermediária e externa, Figura 43. Cinco perfis foram realizados nessa concha: o perfil (A), com 5 pontos na camada externa e 5 na intermediária; o perfil (B) com 10 pontos na camada intermediária; o perfil (C), realizado próximo ao (B), com 5 pontos na camada interna e 5 na externa; o perfil (D), com 5 pontos na camada externa; e o perfil (E) próximo ao perfil (C),

com 10 pontos na camada interna, na região do umbo. Ao todo foram realizados 45 pontos amostrais nessa amostra (Figura 44).

Figura 44 - Localização dos perfis e das crateras na concha (3)

Fonte: O autor, 2016.

Os resultados encontrados na terceira concha para a razão ²⁰⁶Pb/²⁰⁷Pb variaram no intervalo de 1,180 a 1,258; e para a razão ²⁰⁸Pb/²⁰⁶Pb entre 1,877 e 1,924 (Figura 45). Através da interpretação do histograma ²⁰⁶Pb/²⁰⁷Pb, nota-se sete grupos identificados entre os cinco perfís amostrais realizados nessa amostra, nos seguintes intervalos da razão ²⁰⁶Pb/²⁰⁷Pb:

A1 : 1,180 – 1,187	B1 : 1,200 – 1,202	C1 : 1,216 – 1,234
A2 : 1,193 – 1,199	B2 : 1,203 – 1,213	D1 : 1,222 – 1,229
		E1 : 1,187 – 1,198

Figura 45 - Assinaturas isotópicas registradas na concha (3)

Fonte: O autor, 2016.

Os sete grupos identificados no histograma ²⁰⁶Pb/²⁰⁷Pb aparentam ter comportamentos de curvas distintos. Porém, quando foram correlacionados ao gráfico 206Pb/207Pb x ²⁰⁸Pb/²⁰⁶Pb; observou-se que estes agruparam-se em três possíveis famílias de assinaturas. Um agrupamento mais radiogênico, composto por C1 e D1; outro grupo formado por A1, A2, B1 e E1; e por ultimo, o grupo B2, com assinatura distinta dos demais. Dois pontos amostrais do perfil (D) apresentaram assinaturas mais radiogênicas do que todos os outros, o que pode representar outras fontes radiogênicas específicas. Observou-se que os valores reportados para os perfis (C) e (D) aparentam a mesma origem; enquanto que o perfil (E), reportou composição isotópica mais próxima dos valores encontrados no perfil (A).

A intensidade do sinal registrada na terceira concha é apresentada na Figura 46. Nos perfis (A) e (C), as amostragens foram realizadas em distintas camadas, com os pontos paralelos e próximos entre si. Os pontos foram realizados dessa forma para observar se ocorre diferença no registro do sinal associada a mudança de camadas. No perfil (A) não observou-se variações significativas do sinal entre as duas camadas, a intensidade máxima registrada na camada externa foi de 8343 cps para ²⁰⁸Pb, e na interna o valor máximo foi de 8099 cps -²⁰⁸Pb. Contudo, no perfil (C), observou certa variação associada a mudança de camada, notouse que os sinais foram mais intensos na camada externa, onde o valor máximo registrado foi de 16817 cps para o ²⁰⁸Pb. Enquanto na camada interna o valor máximo foi de 7847 cps para o mesmo isótopo. O perfil (B), realizado próximo ao perfil (C), os valores reportaram em média 4000 (cps) para o mesmo isótopo. Comparando os sinais obtidos em (B) com (C) observou-se que a maior intensidade ocorreu na camada externa, enquanto que na camada intermediária observou-se uma intensidade média; e na camada interna registrou-se a menor intensidade. Já o perfil (D) foi realizado na camada externa, com as amostragens paralelas e próximas dos 5 primeiros pontos do perfil (E), observou a menor intensidade nesse perfil em 1114 cps - ²⁰⁸Pb e valor máximo de 2891 cps para o mesmo isótopo. O perfil (E) foi realizado na camada interna, observou-se a maior variação da intensidade do sinal, com os valores variando de 7254 a 20279 (cps) para o ²⁰⁸Pb. Comparando as intensidades registradas na camada externa (D) com os pontos analisados na camada interna, no perfil (E), próximo ao umbo, nota-se que as maiores intensidades ocorrem no perfil (E), o qual registrou a maior intensidade nessa concha.

Figura 46 – Contagem por segundo dos isótopos de chumbo: concha (3)

Fonte: O autor, 2016.

Os valores encontrados para a composição isotópica da quarta amostra estão descritos na Tabela 7, ao todo forma realizados 30 pontos amostrais, distribuídos em três perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01.4	12 825	10.850	200/204	200/200	1 053
02	42.833	19.859	20.849	2.004	1.053
02A 03 A	43.132	20.667	21.055	2.003	1.054
03A	44.381	10 80/	21.090	2.034	1.050
05A	13 898	20 303	20.880	2.074	1.052
05A	44 768	20.575	21.405	2.004	1.057
074	43 746	20.000	21.875	2.001	1.057
08A	42 580	19 741	20.723	2.057	1.050
09A	41 599	19 323	20.725	2.000	1.055
10A	40 269	18 788	19 614	2.010	1.031
10/1	10.209	10.700	19.011	2.000	1.011
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	40.840	18.360	19.334	2.115	1.050
02B	41.142	18.561	19.547	2.107	1.054
03B	41.551	18.740	19.636	2.125	1.052
04B	42.326	19.043	20.035	2.119	1.054
05B	40.394	18.308	19.172	2.115	1.048
06B	35.513	16.146	17.026	2.119	1.042
07B	34.623	15.599	16.483	2.100	1.039
08B	36.708	16.445	17.417	2.119	1.046
09B	36.190	16.431	17.400	2.089	1.038
10B	33.298	14.857	15.822	2.116	1.049
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	41.087	18.538	19.509	2.106	1.056
02C	42.229	19.043	20.002	2.113	1.053
03C	41.265	18.602	19.585	2.110	1.052
04C	42.110	18.972	20.052	2.099	1.058
05C	41.077	18.560	19.568	2.104	1.058
06C	41.525	18.703	19.724	2.103	1.055
07C	42.100	19.011	19.969	2.110	1.051
08C	42.094	18.985	20.003	2.104	1.050
09C	41.805	18.772	19.815	2.110	1.060
10C	41.342	18.733	19.631	2.108	1.051

Tabela 7 – composição isotópica determinada nos perfis da concha (4)

Três perfis foram realizados na quarta amostra, Figura 47. O perfil (A) na camada externa; (B) na camada intermediária; e (C) na camada interna, próximo ao umbo da concha.

Figura 47 - Localização dos perfis e das crateras na concha (4)

Os resultados obtidos nessa amostra para a razão ²⁰⁶Pb/²⁰⁷Pb variaram no intervalo de 1,038 a 1,060; e para a razão ²⁰⁸Pb/²⁰⁶Pb de 2,046 a 2,125 (Figura 48). Através do histograma ²⁰⁶Pb/²⁰⁷Pb e da interpretação do comportamento da curva amostral gerada em cada perfil, foi possível identificar cinco grupos, identificados nos seguintes intervalos:

A1 : 1,050 – 1,057	B1 : 1,038 – 1,042	C1 : 1,050 – 1,060
	B2 : 1,046 – 1,052	
	B3 : 1,053 – 1,054	

Fonte: O autor, 2016.

Figura 48 – Assinaturas isotópicas registradas na concha (4)

Legenda: (1) 206 Pb/ 207 Pb; (2) 206 Pb/ 207 Pb x 208 Pb/ 206 Pb. Fonte: O autor, 2016.

Observa-se no segundo gráfico (²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb) que os perfis, reportam quatro possíveis assinaturas isotópicas. Os perfis (A) e (B) foram realizados próximos entre si, nota-se que os grupo identificado na camada externa, no perfil (A) reportou diferente composição isotópica quando comparado com os grupos identificados no perfil (B), camada interna. O que possivelmente representa distintas fontes de poluição. Os grupos B1 e B2 destacaram-se dos demais, enquanto que B3 e C1, aparentam pertencer a mesma fonte.

A intensidade do sinal registrada nos perfis da quarta concha é apresentada na Figura 49. O perfil (A), realizado na camada externa reportou valores variando entre 25.000 e 10.000 (cps) para ²⁰⁸Pb. Enquanto no perfil (B), onde as análises ocorreram na camada intermediária, bem próximo do perfil (A), o sinal comportou-se de outra maneira, nota-se um gradiente acentuado no meio do perfil, com o sinal variando de 19518 (cps) para 2190 (cps) para o ²⁰⁸Pb. Esta variação do sinal registrada no perfil (B) é acompanhada de uma significativa mudança nas razões isotópicas, conforme observado na Figura 48, na qual os menores valores em cps refletem as razões menos radiogênicas. No perfil (C), cujas análises foram realizadas na camada interna, próximo ao umbo, registrou os sinais mais intensos, com valores médios em 25000 (cps) para o mesmo isótopo.

Figura 49 – Contagem por segundo dos isótopos de chumbo: concha (4)

Fonte: O autor, 2016.

Os valores da composição isotópica registrada nos perfis da quinta concha estão na Tabela 8, ao todo, foram realizados 30 pontos amostrais, distribuídos em três perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	40 275	18 297	19 141	2 107	1 053
02A	40.090	18.170	19.174	2 095	1.055
03A	41 436	18 755	19.756	2.093	1.053
04A	40 489	18 401	19 262	2.122	1.025
05A	41 976	19.096	20.031	2.097	1.048
06A	41 305	18 755	19 719	2 098	1.048
07A	40.071	18.320	19.166	2.112	1.040
08A	40 802	18 454	19 443	2 101	1 053
09A	40.442	18.330	19.185	2.104	1.047
10A	41.501	18.806	19.719	2.101	1.048
- •					
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	39.175	17.565	18.396	2.127	1.066
02B	39.308	17.670	18.497	2.108	1.052
03B	39.930	17.858	18.724	2.131	1.040
04B	39.244	17.643	18.643	2.109	1.053
05B	39.444	17.673	18.815	2.114	1.064
06B	41.106	18.711	19.447	2.107	1.046
07B	40.723	18.321	19.221	2.106	1.054
08B	41.219	18.542	19.547	2.097	1.060
09B	42.913	19.165	20.329	2.112	1.052
10B	41.935	18.941	19.819	2.119	1.046
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	40.714	18.373	19.267	2.121	1.061
02C	39.955	17.861	19.000	2.117	1.062
03C	41.555	18.636	19.646	2.122	1.061
04C	40.723	18.394	19.438	2.115	1.061
05C	42.599	19.116	20.272	2.118	1.056
06C	43.332	19.451	20.566	2.115	1.053
07C	41.955	18.702	19.938	2.119	1.062
08C	41.858	18.882	19.984	2.118	1.057
09C	42.735	19.316	20.226	2.123	1.046
10C	44.833	20.189	21.259	2.124	1.050

Tabela 8 – composição isotópica determinada nos perfis da concha (5)

O perfil (A), realizado na camada interna com 10 pontos amostrais próximo ao umbo da concha; o perfil (B), na parte central da concha, com 5 pontos na camada externa e 5 na camada interna; e o perfil (C), com 10 pontos na camada externa (Figuras 50).

Figura 50 - Localização dos perfis e das crateras na concha (5)

Fonte: O autor, 2016.

Os valores obtidos para essa amostra, razão ²⁰⁶Pb/²⁰⁷Pb variaram entre: 1,040 e 1,066 enquanto para a razão ²⁰⁸Pb/²⁰⁶Pb entre: 2,093 e 2,131 (Figura 51). Através do histograma ²⁰⁶Pb/²⁰⁷Pb, nota-se quatro grupos, identificados nos seguintes intervalos da razão ²⁰⁶Pb/²⁰⁷Pb:

A1 : 1,045 – 1,058	B1 : 1,052 − 1,054	C1 : 1,046 – 1,057
		C2 : 1,061 – 1,062

Figura 51 – Assinaturas isotópicas registradas na concha (5)

Legenda: (1) 206 Pb/ 207 Pb; (2) 206 Pb/ 207 Pb x 208 Pb/ 206 P Fonte: O autor, 2016.

Observa-se no segundo gráfico (²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb) que os grupos identificados nos perfis (A) e (C), apresentam composições isotópicas distintas entre si, provavelmente representar distintas famílias de assinaturas isotópicas. Os grupos A1 e C1 associados a assinaturas menos radiogênica. Enquanto C3, deve ter sua origem em uma fonte mais radiogênica. Assim como os dois pontos amostrais realizados no perfil (B), os quais apresentaram composição isotópica bem próximas a C3. Nota-se também uma correlação linear entre os pontos amostrais do perfil (B), sugerindo uma mistura de componentes, de distintas fontes com razões isotópicas diferente entre si, o que justifica os valores intermediários observados no perfil (B).

Nessa concha, os sinais mais intensos ocorreram no perfil (A), na camada interna, próximo ao umbo, nos quais os valores registraram em média 15000 (cps) para ²⁰⁸Pb. No perfil (C), as análises ocorreram na camada externa, a média foi de 6000 (cps) para o mesmo isótopo. Enquanto no perfil (B), onde os pontos amostrais foram realizados nas duas camadas (interna e externa), observou-se uma variação significativa na intensidade do sinal entre uma camada e outra. Com os sinais mais intensos registrados na camada interna, cujo valor máximo foi 9705 cps para ²⁰⁸Pb, enquanto na camada externa a maior intensidade registrada foi 5778 cps para o mesmo isótopo, (Figura 52).

Figura 52 – Contagem por segundo dos isótopos de chumbo: concha (5)

Fonte: O autor, 2016.

A composição isotópica obtida nos perfis da concha (6) está descrita na Tabela 9, ao todo foram realizados 30 pontos amostrais, distribuídos em três perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	36.693	16.767	17.722	2.065	1.058
02A	33.407	15.442	16.247	2.059	1.060
03A	40.033	18.362	19.277	2.081	1.056
04A	36.467	16.529	17.440	2.101	1.056
05A	36.571	16.638	17.474	2.102	1.046
06A	37.405	17.107	18.010	2.084	1.052
07A	39.454	17.816	19.026	2.073	1.059
08A	36.040	16.149	17.250	2.074	1.060
09A	36.451	16.684	17.542	2.092	1.044
10A	39.819	18.085	18.837	2.079	1.045
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	39.811	18.241	19.617	2.063	1.068
02B	40.197	18.269	19.763	2.069	1.075
03B	40.445	18.525	19.876	2.069	1.069
04B	40.625	18.425	19.855	2.081	1.074
05B	41.705	19.053	20.424	2.071	1.068
06B	40.522	18.400	19.850	2.071	1.074
07B	42.011	19.090	20.642	2.070	1.073
08B	37.859	17.250	18.447	2.082	1.066
09B	43.570	19.801	21.283	2.082	1.070
10B	41.440	18.739	20.298	2.075	1.073
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	40.282	18.292	19.983	2.044	1.086
02C	40.620	18.336	19.881	2.043	1.083
03C	40.997	18.551	19.914	2.062	1.074
04C	42.870	19.264	20.841	2.059	1.077
05C	40.998	18.596	19.971	2.049	1.074
06C	43.079	19.428	20.824	2.063	1.071
07C	41.220	18.597	20.052	2.060	1.075
08C	42.833	19.246	20.717	2.059	1.075
09C	42.518	19.148	20.639	2.062	1.075
10C	44.329	19.999	21.506	2.059	1.075

Tabela 9 – composição isotópica determinada nos perfis da concha (6)

A espécie *Cyclinella tennuis* possui duas camadas na concha, Figura 53. Três perfis foram realizados, o perfil (A) com 10 pontos na camada externa; o perfil (B) com 10 pontos também na camada externa; e o perfil (C) com 10 pontos na camada interna. Os pontos amostrais dos perfis (B) e (C) foram realizados próximos entre si (Figura 54).

Figura 53 – Desenho esquemático da concha de *Cyclinella tennuis* e as duas camadas

Fonte: O autor, 2016.

Os resultados variaram de 1,044 – 1,086 para a razão ²⁰⁶Pb/²⁰⁷Pb; para a razão ²⁰⁸Pb/²⁰⁶Pb entre: 2,043 e 2,101 (Figura 55). Quando os valores foram plotados no histograma ²⁰⁶Pb/²⁰⁷Pb, observou-se distintos agrupamentos, identificados nos seguintes intervalos:

A1: 1,044 – 1,046	B1: 1,066 – 1,069	C1: 1,071 – 1,077
A2: 1,052 – 1,056	B2: 1,070 – 1,075	C2: 1,083 – 1,086
A3: 1.058 – 1.060		

Figura 55 - Assinaturas isotópicas registradas na concha (6)

Legenda: (1) 206 Pb/ 207 Pb; (2) 206 Pb/ 207 Pb x 208 Pb/ 206 Pb. Fonte: O autor, 2016.

Quando os resultados foram plotados no gráfico ${}^{206}Pb/{}^{207}Pb x {}^{208}Pb/{}^{206}Pb$ observou-se que os grupos identificados no histograma (${}^{206}Pb/{}^{207}Pb$), distribuíram-se em distintas áreas do segundo gráfico (${}^{206}Pb/{}^{207}Pb x {}^{208}Pb/{}^{206}Pb$). Provavelmente, essa configuração seja a mistura de componentes provenientes de distintas fontes. Observou-se também, no perfil (A), valores menos radiogênicos em relação aos valores reportados nos perfis (B) e (C).

A intensidade dos sinais da concha (6) é apresentada na Figura 56. Os perfis (A) e (B), foram realizados na camada externa, enquanto o perfil (C) na camada interna. Os pontos amostrais dos perfis (B) e (C) foram realizados próximos e paralelos entre si. Notou-se que o perfil (A) registrou sinais mais fracos, com média de 3500 cps ²⁰⁸Pb. No perfil (B) a intensidade do sinal variou de forma mais acentuada, o sinal mais intenso reportou 11584 cps ²⁰⁸Pb e o menor sinal 4375 cps ²⁰⁸Pb. Enquanto que no perfil (C) os sinais foram constantes, com valores médios de 7500 cps ²⁰⁸Pb.

Figura 56 - Contagem por segundo dos isótopos de chumbo: concha (6).

Fonte: O autor, 2016.

A composição isotópica obtida nos perfis da concha (7) está descrita na Tabela 10, ao todo, foram realizados 30 pontos amostrais, distribuídos em três perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	52.810	25.320	26.870	2.060	52.810
02A	47.700	22.512	24.074	2.062	47.700
03A	55.389	26.194	27.644	2.082	55.389
04A	68.919	32.747	34.968	2.055	68.919
05A	53.618	25.442	27.317	2.055	53.618
06A	58.658	28.061	29.559	2.061	58.658
07A	57.872	27.480	28.940	2.084	57.872
08A	63.093	29.644	31.158	2.097	63.093
09A	51.951	24.489	25.928	2.084	51.951
10A	48.556	23.005	24.347	2.074	48.556
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	44.496	21.033	22.048	2.082	44.496
02B	46.028	21.522	22.826	2.081	46.028
03B	45.589	21.342	22.617	2.080	45.589
04B	46.291	21.693	22.994	2.078	46.291
05B	45.928	21.504	22.733	2.085	45.928
06B	46.272	21.642	22.941	2.081	46.272
07B	45.596	21.317	22.566	2.085	45.596
08B	45.736	21.477	22.639	2.085	45.736
09B	46.568	21.782	23.107	2.080	46.568
10B	45.738	21.361	22.590	2.089	45.738
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	45.639	21.360	22.724	2.063	1.064
02C	45.197	20.996	22.387	2.074	1.066
03C	51.928	24.248	25.518	2.096	1.051
04C	44.652	20.766	22.002	2.087	1.060
05C	49.945	23.210	24.791	2.069	1.068
06C	48.911	22.692	24.045	2.089	1.061
07C	44.411	20.634	21.841	2.089	1.059
08C	46.292	21.557	23.081	2.065	1.069
09C	51.355	24.061	25.370	2.077	1.058
10C	43.768	20.475	21.629	2.078	1.057

Tabela 10 – composição isotópica determinada nos perfis da concha (7)

Os perfis (A) e (B), foram realizados na camada externa, enquanto o perfil (C) na camada interna, próximo ao perfil (B), (Figura 57).

Figura 57 – Localização dos perfis e das crateras na concha (7)

Os resultados variaram entre 1,048 e 1,074 para a razão ²⁰⁶Pb/²⁰⁷Pb, e para a razão ²⁰⁸Pb/²⁰⁶Pb entre 2,055 e 2,097 (Figura 58). Quando os valores foram plotados no histograma ²⁰⁶Pb/²⁰⁷Pb, observou-se distintos agrupamentos, identificados nos seguintes intervalos:

A1: 1,058 – 1,060	B1: 1,054 – 1,061	C1: 1,057 – 1,061
A2: 1,070 – 1,074		C2: 1,064 – 1,069

Fonte: O autor, 2016.

Figura 58 - Assinaturas isotópicas registradas na concha (7)

Legenda: (1) 206 Pb/ 207 Pb; (2) 206 Pb/ 207 Pb x 208 Pb/ 206 Pb. Fonte: O autor, 2016.

Quando os valores foram plotados no gráfico ²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb, observou-se que os grupos A1, B1 e C1 reportaram composição isotópica similar, provavelmente, com a mesma fonte de origem, enquanto que A2 e C2, apresentaram outros comportamentos aos quais podem ser associados a fontes mais radiogênicas.

A intensidade do sinal registrada para os perfis da concha (7) é apresentada na Figura 59. O perfil (A), realizado na camada externa, numa região mais afastada de (B) e (C). Os perfis (B) e (C) foram realizados nas camadas externa e interna, respectivamente, com os pontos paralelos e próximos entre si. Observou-se que os valores reportados no perfil (B), camada externa, foram mais intensos quando comprados com os valores registrados em (C), camada interna. O perfil (A) registrou um pico de 8100 (cps - ²⁰⁸Pb), o perfil (B) reportou o sinal mais intenso em 52500 (cps - ²⁰⁸Pb), enquanto (C) registrou valor máximo de 24500 (cps - ²⁰⁸Pb).

Figura 59 – Contagem por segundo dos isótopos de chumbo: concha (7)

Fonte: O autor, 2016.

Os valores da composição isotópica registrada nos perfis da oitava amostra estão descritos na Tabela 11, ao todo foram analisados 30 pontos, distribuídos em três perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	37 791	17.052	17 914	2 107	1 055
02A	35 908	16 337	17 248	2.089	1.056
03A	37 730	16.978	17.958	2.097	1.060
04A	36 050	16 334	17 226	2 095	1 055
05A	35.710	16.142	16.924	2.111	1.048
06A	39.590	17.849	18.860	2.103	1.055
07A	37.261	16.834	17.818	2.092	1.059
08A	36.922	16.548	17.491	2.112	1.056
09A	36.778	16.554	17.541	2.098	1.060
10A	34.768	15.597	16.660	2.087	1.068
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	36.512	16.455	17.270	2.116	1.050
02B	34.439	15.568	16.440	2.098	1.055
03B	36.170	16.126	16.998	2.126	1.056
04B	38.517	17.339	18.218	2.116	1.051
05B	37.497	16.804	17.809	2.107	1.060
06B	37.786	17.070	17.905	2.109	1.050
07B	40.247	18.076	19.000	2.122	1.049
08B	38.314	17.222	18.141	2.114	1.054
09B	36.923	16.563	17.534	2.110	1.056
10B	38.925	18.107	19.087	2.121	1.049
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	39.971	18.148	19.053	2.104	1.049
02C	37.847	16.923	17.846	2.120	1.055
03C	47.002	21.040	22.353	2.092	1.062
04C	33.193	14.850	15.616	2.114	1.059
05C	39.799	17.713	18.926	2.110	1.058
06C	40.950	18.531	19.623	2.083	1.064
07C	42.799	18.962	20.307	2.105	1.067
08C	41.388	18.656	19.815	2.088	1.061
09C	27.329	12.325	13.015	2.085	1.069
10C	46.571	20.727	21.965	2.107	1.062

Tabela 11 – composição isotópica determinada nos perfis concha (8)

Figura 60 - Desenho esquemático da concha de Corbula cubaniana e as duas camadas

Fonte: O autor, 2016.

Corbula cubaniana possui duas camadas formando a concha: interna e externa, Figura 60. O perfil (A) foi realizado na camada externa; o perfil (B), nas duas camadas, com 5 pontos na camada externa e 5 na camada interna; e o perfil (C) na camada interna (Figura 61).

Figura 61 - Localização dos perfis e das crateras na concha (8)

Fonte: O autor, 2016.

Nessa amostra, os valores para a razão ²⁰⁶Pb/²⁰⁷Pb variaram de 1,048 a 1,069; para a razão ²⁰⁸Pb/²⁰⁶Pb entre 2,083 e 2,126. Quando os dados foram plotados no histograma ²⁰⁶Pb/²⁰⁷Pb, Figura 62, observou-se seis grupos, identificados nos seguintes intervalos da razão ²⁰⁶Pb/²⁰⁷Pb:

A1 : 1,055 – 1,056	B1 : 1,049 – 1,051	C1 : 1,058 – 1,061
A2 : 1,059 – 1,060	B2 : 1,054 – 1,056	C2 : 1,062 – 1,064

Figura 62 - Assinaturas isotópicas registradas na concha (8)

Fonte: O autor, 2016.

Ouando os valores foram correlacionados no segundo gráfico (²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb) observou-se que os grupo A1 e B2 distribuíram-se na mesma área do gráfico, configurando uma família de assinatura, provavelmente, proveniente de uma origem comum. No perfil (B) avaliando os dados, observou-se que o grupo B1 registrou uma assinatura isotópica, enquanto o grupo B2 reportou outra configuração. Notou-se ainda que dois pontos: 10A e 09C, em destaque no segundo gráfico, aparentam reportar uma fonte específica, mais radiogênica.

A intensidade do sinal registrada nos perfis da concha 8, é apresentada no Figura 63. Observou-se que o perfil (A) registrou alta variabilidade entre os sinais, com a maior intensidade em 12835 (cps) para ²⁰⁸Pb e a menor 5366 (cps) para o mesmo isótopo. No perfil (B), observou-se que os sinais variaram devido a mudança de camadas, o sinal mais intenso foi registrado na camada externa, 14178 (cps - para ²⁰⁸Pb) enquanto a menor intensidade, na camada interna, 5794 (cps) para ²⁰⁸Pb. Já o perfil (C) apresentou sinais mais constantes, com valores médios em torno de 5000 (cps) para ²⁰⁸Pb.

Figura 63 – Contagem por segundo dos isótopos de chumbo: concha (8)

Fonte: O autor, 2016.

Os valores registrados para a composição isotópica obtida nos perfis da concha 9, estão descrita na Tabela 12, 30 pontos foram analisados, distribuídos em 3 perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	40.132	18.149	19.182	2.092	1.060
02A	44.906	20.122	21.274	2.116	1.055
03A	42.124	18.944	20.008	2.104	1.057
04A	45.140	20.265	21.312	2.121	1.051
05A	42.692	19.081	20.347	2.101	1.065
06A	43.457	19.431	20.522	2.118	1.055
07A	41.022	18.461	19.510	2.105	1.057
08A	42.444	18.932	20.159	2.107	1.065
09A	43.899	19.542	20.683	2.123	1.059
10A	43.194	19.347	20.523	2.107	1.060
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	42.100	18.839	19.927	2.113	1.058
02B	42.218	18.913	19.990	2.112	1.057
03B	42.557	19.021	20.166	2.111	1.060
04B	42.610	19.065	20.138	2.116	1.056
05B	42.279	18.930	20.076	2.106	1.061
06B	41.837	18.676	19.847	2.109	1.062
07B	43.869	19.646	20.770	2.115	1.058
08B	45.149	20.244	21.477	2.102	1.062
09B	43.328	19.418	20.633	2.097	1.064
10B	46.507	20.755	22.037	2.109	1.063
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	44.165	19.685	21.072	2.100	1.071
02C	46.242	20.828	22.097	2.092	1.064
03C	48.440	21.768	23.022	2.100	1.061
04C	40.323	18.083	19.156	2.102	1.061
05C	45.376	20.140	21.508	2.110	1.066
06C	42.227	19.065	20.120	2.100	1.055
07C	48.602	21.713	23.023	2.109	1.063
08C	43.904	20.835	22.226	2.093	1.069
09C	44.160	19.667	20.907	2.110	1.063
10C	45.344	20.295	21.558	2.103	1.064

Tabela 12 – composição isotópica determinada nos perfis da concha (9)

A nona amostra pertence a espécie *Corbula cubaniana*, duas camadas formam a concha. O perfil (A) foi realizado na camada externa; o perfil (B), com 5 pontos na camada externa e 5 na interna; e o perfil (C) na camada interna (Figura 64).

Figura 64 - Localização dos perfis e das crateras na concha (9)

A4: 1,065 - 1,065

Os valores obtidos para a razão 206 Pb/ 207 Pb ocorreram no intervalo (1,051 – 1,071); enquanto para a razão 208 Pb/ 206 Pb variaram de 2,092 a 2,123. Quando os valores foram plotados no histograma 206 Pb/ 207 Pb, Figura 65, observou-se oito agrupamentos, identificados nos seguintes intervalos da razão 206 Pb/ 207 Pb:

A1 : 1,051 – 1,055	B1 : 1,056 – 1,058	C1 : 1,061 – 1,066
A2 : 1,057 – 1,057	B2 : 1,060 – 1,064	C2 : 1,069 – 1,071
A3 : 1.059 – 1.060		

96

Fonte: O autor, 2016.

Figura 65 - Assinaturas isotópicas registradas na concha (9)

Quando os valores foram correlacionados ao segundo gráfico (²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb), observou-se que o grupo A1 apresentou assinatura isotópica menos radiogênica que os demais, o grupo A2 correlacionou-se com um ponto do perfil (C); provavelmente devem estar associados a mesma fonte. Já o grupo A3, quando foi correlacionado ao segundo gráfico, os valores dispersaram-se, reportando composições isotópicas distintas, sugerindo que A3 seja uma mistura de diversas fontes. Observa-se ainda no segundo gráfico uma tendência linear entre os dados, de uma maneira geral, pode ser interpretado como a mistura de componentes com diferentes razões isotópicas, provenientes de distintas fontes.

A intensidade do sinal registrada nos perfis da concha 9, é apresentada na Figura 66. O perfil (A) apresentou baixa variabilidade entre os valores, com valor máximo de 9214 (cps) para ²⁰⁸Pb. No perfil (B), onde foram examinados 5 pontos na camada externa e 5 na interna, verificou-se uma elevada variabilidade da intensidade do sinal associada a mudança de camadas. Neste perfil, registrou-se intensidades da ordem de 56896 (cps) na camada externa, enquanto na camada interna 11116 (cps) para o ²⁰⁸Pb. Já no perfil (C) a intensidade do sinal foi registrada de forma crescente ao longo do perfil, com o menor valor registrando 4595 (cps) e o maior 9036 (cps) para o ²⁰⁸Pb.

Legenda: (1) 206 Pb/ 207 Pb; (2) 206 Pb/ 207 Pb x 208 Pb/ 206 Pb Fonte: O autor, 2016.

Figura 66 – Contagem por segundo dos isótopos de chumbo: concha (9)

Fonte: O autor, 2016.

Os valores obtidos para a composição isotópica nos perfis da concha (10) estão descrita na Tabela 13, 30 pontos amostrais foram examinados, distribuídos em 3 perfis.

Tabela 13 - composição isotópica determinada nos perfis da concha (10)					
PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	41.062	18.224	20.058	2.055	1.106
02A	40.304	17.894	19.618	2.044	1.097
03A	40.443	18.057	19.738	2.047	1.097
04A	41.541	18.461	20.270	2.049	1.098
05A	42.216	18.862	20.592	2.045	1.095
06A	40.196	17.773	19.503	2.057	1.096
07A	41.477	18.382	20.148	2.048	1.094
08A	41.055	18.164	19.938	2.058	1.094
09A	40.868	18.266	19.875	2.066	1.086
10A	40.537	18.103	19.942	2.035	1.099
PERFILB	208/204	207/204	206/204	208/206	206/207
01B	41.114	18.268	19.998	2.056	1.096
02B	41.341	18.369	20.093	2.055	1.095
03B	41.734	18.503	20.265	2.064	1.094
04B	41.435	18.375	20.096	2.063	1.096
05B	41.178	18.332	20.051	2.061	1.095
06B	41.758	18.529	20.306	2.060	1.096
07B	41.064	18.239	19.992	2.054	1.096
08B	42.657	18.930	20.717	2.060	1.095
09B	41.658	18.514	20.287	2.056	1.096
10B	40.468	17.975	19.700	2.055	1.097
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	40.572	17.944	19.778	2.061	1.096
02C	40.236	17.847	19.580	2.057	1.097
03C	40.321	17.877	19.516	2.063	1.096
04C	40.395	18.103	19.634	2.062	1.097
05C	40.220	17.886	19.603	2.058	1.097
06C	40.343	17.924	19.595	2.058	1.096
07C	40.869	18.125	19.898	2.051	1.100
08C	40.427	18.014	19.668	2.058	1.096
09C	40.244	17.986	19.658	2.056	1.098
10C	40.083	17.775	19.387	2.061	1.098

Três perfis foram realizados ao longo da concha, o perfil (A), na camada externa; (B), na camada externa; e (C) na camada interna. As amostragens de (B) e (C) foram realizadas próximas entre si (Figura 67).

Figura 67 - Localização dos perfis e das crateras na concha (10)

Os resultados obtidos na concha (10) variaram de 1,086 a 1,106 para a razão 206 Pb/ 207 Pb; enquanto para a razão 208 Pb/ 206 Pb variaram de 2,035 a 2,066. Quando os valores foram plotados no histograma (206 Pb/ 207 Pb), Figura 68, observou-se um grupo em cada perfíl:

A1: 1,094 – 1,098 B1: 1,094 – 1,097 C1: 1,096 – 1,098

Fonte: O autor, 2016.

Figura 68 - Assinaturas isotópicas registradas na concha (10)

Quando os valores foram correlacionados ao gráfico ²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb, observou-se que a composição isotópica entre os perfis (B) e (C) foi bastante similar, sugerindo que podem ser provenientes da mesma fonte. Enquanto que o grupo identificado no perfil (A): A1, apresentou outra composição, possivelmente associado a outra fonte. Nota-se ainda que outros três pontos do perfil (A): 01A, 08A e 10A, não corresponderam a composição isotópica do grupo A1, talvez esses pontos estejam associados a outras fontes.

A intensidade do sinal registrado nos perfís da concha (10), é apresentada na Figura 69. O perfíl (A) apresentou os sinais com maior variabilidade, observou-se nesse perfíl intensidade máxima de 13098 (cps) e mínima em 7020 (cps) para ²⁰⁸Pb. Os perfís (B) e (C), realizados em distintas camadas, porém com as amostragens próximas entre si. Comparando os sinais registrados nos 2 perfís, observou-se sinais mais intensos na camada externa (B), com o valor máximo em 26226 (cps) enquanto que na camada interna (C) registrou valor máximo em 9091 (cps), ambos pra o ²⁰⁸Pb.

Figura 69 – Contagem por segundo dos isótopos de chumbo: concha (10)

Fonte: O autor, 2016.

A composição isotópica obtida nos perfis da concha (11) está descrita na Tabela 14, 30 pontos amostrais foram realizados, distribuídos em três perfis.

PERFIL A	208/204	207/204	206/204	208/206	206/207
01A	38.836	17.821	18.907	2.071	1.063
02A	30.954	14.104	14.724	2.114	1.042
03A	36.226	16.445	17.218	2.110	1.059
04A	38.517	17.321	18.243	2.119	1.062
05A	41.857	18.922	19.930	2.098	1.056
06A	39.658	17.914	19.011	2.085	1.064
07A	37.921	17.089	18.087	2.085	1.067
08A	41.932	18.845	20.152	2.082	1.068
09A	43.729	19.704	21.213	2.069	1.078
10A	32.853	14.821	15.600	2.108	1.056
PERFIL B	208/204	207/204	206/204	208/206	206/207
01B	22.358	10 244	10.810	2.083	1 066
02B	30 911	13.836	14 523	2 096	1 082
03B	29 422	13 549	14 275	2.058	1.002
04B	25 763	11 316	12.050	2 138	1.062
05B	47 910	21 456	23 181	2 073	1 068
06B	31.037	15 141	16 144	2.073	1.000
07B	22.937	13 560	14 240	2.128	1.073
08B	40 425	19 738	20.898	2.116	1.072
09B	36 293	18 719	20.690	2.080	1.091
10B	29.576	14.551	15.443	2.105	1.071
	A AA /A A /	205/204	2 0 < 12 0 4	A AA (A AA (A A < IAA
PERFIL C	208/204	207/204	206/204	208/206	206/207
01C	35.250	15.798	16.731	2.108	1.061
02C	30.766	13.769	14.343	2.101	1.070
03C	21.248	11.619	12.098	2.126	1.053
04C	31.652	16.376	16.919	2.092	1.061
05C	34.627	18.399	19.384	2.106	1.059
06C	34.093	16.327	17.189	2.101	1.058
07C	31.759	14.519	15.240	2.110	1.048
08C	31.910	14.259	14.854	2.142	1.046
09C	32.508	21.795	23.253	2.122	1.048
10C	31.616	16.666	17.601	2.099	1.065

Tabela 14 – composição isotópica determinada nos perfis a concha (11)

Figura 70 - Desenho esquemático ilustrando a concha de Tellina petitiana e as duas camadas

Fonte: O autor, 2016.

A espécie *Tellina petitiana* possui duas camadas na concha: interna e externa, Figura 70. Três perfis foram realizados ao longo da concha, o perfil (A), com 10 pontos distribuídos na camada externa. Os perfis (B) e (C), realizados na região central da concha, os pontos amostrais do perfil (B) foram na camada externa e os do perfil (C) na camada interna, cada perfil com 10 pontos amostrais (Figura 71).

Figura 71 - Localização dos perfis e das crateras na concha (11)

Fonte: O autor, 2016.

Os resultados obtidos nos três perfís variaram no intervalo de 1,042 à 1,091 para a razão ²⁰⁶Pb/²⁰⁷Pb; já para a razão ²⁰⁸Pb/²⁰⁶Pb variaram de 2,058 a 2,142. Quando os dados foram plotados no histograma (²⁰⁶Pb/²⁰⁷Pb), Figura 72, observou-se quatro agrupamentos, nos seguintes intervalos da razão ²⁰⁶Pb/²⁰⁷Pb:

Figura 72 - Assinaturas isotópicas registradas na concha (11)

Quando os valores foram correlacionados ao gráfico ²⁰⁶Pb/²⁰⁷Pb x ²⁰⁸Pb/²⁰⁶Pb, observou-se que os grupos A1, B1 e C2 apresentaram composição isotópica similar entre eles, sugerindo que podem ser provenientes da mesma fonte. Enquanto C1 reportou outra assinatura, possivelmente associado a outra fonte menos radiogênica.

A intensidade do sinal registrado para os perfis da concha (11) é apresentada na Figura 73. O perfil (A) apresentou valor máximo de 2157 (cps), o perfil (B) em 1300 (cps), e o perfil (C) 2409 (cps), em relação ao ²⁰⁸Pb. Os perfis (B) e (C), foram realizados em distintas camadas, as amostragens foram paralelas e próximas entre si, nessa amostra não observou-se variação significativa do sinal relacionada a mudança de camada. Nota-se que os sinais foram mais fracos nessa amostra em relação as outras, a maior contagem registrou 2409 (cps) ²⁰⁸Pb.

Figura 73 – Contagem por segundo dos isótopos de chumbo: concha (11)

Fonte: O autor, 2016.